
A Multi-Module Anomaly Detection Scheme based
on System Call Prediction

Zhenghua Xu 1, Xinghuo Yu 1, Yong Feng 1,2, Jiankun Hu 3, Zahir Tari 1, Fengling Han 1

1RMIT University, Melbourne, VIC 3001, Australia
{zhenghua.xu, x.yu, zahir.tari, fengling.han}@rmit.edu.au

2Harbin Institute of Technology, Harbin, 150001, China
yong.feng.5601@gmail.com

3University of New South Wales, ADFA, Canberra, ACT 2600, Australia
J.Hu@adfa.edu.au

Abstract—Due to the rapid and continuous increase of network
intrusion, the need of protecting our systems becomes more
and more compelling. In many situations, there exists a weak
anomaly signal detection problem: due to the little number
of anomalous system calls, the anomalous patterns of some
intrusions may not be enough to distinguish themselves from
normal activities so the existing anomaly detection systems can
not detect this kind of sequences accurately. Motivated by this, we
propose a multi-module anomaly detection scheme to solve this
problem through utilizing system call prediction to enlarge the
patterns of weak anomaly signal sequences and make them more
distinguishable. Besides this, a variation of the Viterbi algorithm
(called VV algorithm) is developed to predict the most probable
future system calls more efficiently and a Markov-based intrusion
detection method is adopted for the pattern value calculation
and anomaly detection. The results of our experimental study
conclude the followings: (i) the proposed scheme can greatly
improve the intrusion detection accuracy of this Markov-based
intrusion detection method in terms of hit rates under small false
alarm rate bounds; (ii) the performance of the proposed scheme
depends on the prediction accuracy of the adopted prediction
technique; (iii) the developed VV algorithm is exponentially more
efficient than a baseline method.

I. INTRODUCTION

In recent years, computer network has become an essential
component of the modern society. There are rapidly increasing
usages of computer network in many domains ranging from
enterprise applications in financial, military and energy sectors
to individual computer users. Therefore, the computer network
quickly becomes the target of criminals and its security has
become a critical problem to the society. As reported, the
economic losses caused by cyber-crime are around $67 billion
annually in US [1] and up to $1 trillion globally in 2009 [2].

Many intrusion detection techniques have been proposed
to identify intrusions that have come into the computers and
network systems and take actions to minimize the damages.
According to the different kinds of analyses carried out,
these intrusion detection techniques can be classified into
the following two categories: Signature Detection Systems
(or called Misuse Detection Systems) and Anomaly Detection
Systems [3].

Specifically, signature detection systems [4], [5], [6] utilize
pattern recognition techniques to find pre-characterized pat-
terns of known attacks within the analyzed data. Therefore,

-20

-15

-10

-5

 0

 0 10 20 30 40

P
at

te
rn

 V
al

ue

Sequence Number

Anomalous Sequence Normal Sequence

Fig. 1. Motivation Example

they can detect well-known attacks effectively and efficiently
but not be able to detect novel, unknown attacks. Anomaly
detection systems [7], [8], [9] construct models (called Norm
Profiles) to characterize the normal activities and any activity
whose pattern deviates far away from the norm profile and ex-
ceeds a predefined threshold is treated as an anomaly (attack).
Anomaly detection systems are ideal for detecting novel and
unknown attacks. Not surprisingly the most common computer
crimes and main sources of damages are from virus, worm or
Trojan infections whose signatures can be changed easily and
many new types of such attacks can be produced which can
easily penetrate commercial firewall systems. Therefore, in this
work, we focus on anomaly detection systems.

System Call is a program signal for requesting a ser-
vice from the system’s kernel. The existing work [10], [11]
has demonstrated that short sequences of system call traces
generated by program executions are stable and consistent
during programs’ normal activities so that they can be used
to distinguish the abnormal operations from normal activities.
Therefore, system call has been widely applied into intrusion
detection work such as, [12], [13], [14], [15], [16], [17].

In many situations, due to the little number of anomalous
system calls, the anomalous patterns of some intrusions may
not be enough to distinguish themselves from normal activities
(i.e., the pattern values of these sequences fall into the value
range of normal activities). An example is shown in Fig. 1
where 40 pre-labeled anomalous short sequences and normal
short sequences are processed by an intrusion detection system
and their pattern values are calculated and plotted. We can
observe that the pattern value range of normal sequences
is [0,−10] while that of anomalous sequences is [−5,−20].
Since the existing anomaly detection systems activate intrusion

1376978-1-4673-6322-8/13/$31.00 c©2013 IEEE

alarms whenever the deviations between given sequences and
the normal activities exceed a predefined threshold, it is diffi-
cult for these systems to accurately distinguish the sequences
whose pattern values fall into [−5,−10]. We call this kind of
sequences Weak Anomaly Signal Sequence and this problem
Weak Anomaly Signal Detection Problem.

Motivated by this, we propose a Multi-module Anomaly
Detection Scheme to solve this problem and improve the
intrusion detection accuracy of existing intrusion detection
methods through utilizing a Markov-based prediction method
to predict the most probable future system call sequences of
weak anomaly signal sequences to extend these sequences,
enlarge their patterns and make them more distinguishable.
The most probable future sequence is predicted by finding
the future sequence that matches a chosen Prediction Model
best among all possible sequences. To improve the runtime
efficiency, we further develop a Variation of Viterbi algorithm
(named VV Algorithm) to make the prediction of most probable
future system call sequences much more efficiently, which
uses a dynamic programming matrix to avoid enumerating all
possible future sequences and calculating the same probability
values repeatedly.

Moreover, in this proposed scheme, the intrusion detection
methods adopted for the pattern value calculation and anomaly
detection can be various according to different requirements.
To keep it simple, we adopt a Markov-based intrusion detec-
tion method proposed by [8] to obtain the Sequence Proba-
bility as the pattern value. Extensive experimental studies are
conducted on the benchmark sendmail dataset and the results
conclude the followings: (i) the proposed scheme can greatly
improve the intrusion detection accuracy of this Markov-based
intrusion detection method in terms of hit rates under small
false alarm rate bounds; (ii) the performance of the proposed
scheme depends on the prediction accuracy of the adopted
prediction technique; (iii) the developed VV algorithm is
exponentially more efficient than a baseline method.

The rest of this paper is organized as follows. We first
describe the benchmark sendmail dataset in Section II. Then,
we present the multi-module anomaly detection scheme and
the VV algorithm in detail in Section III and Section IV,
respectively. Section V describes the experimental study and
reports its results. We conclude the paper and discuss the future
work in Section VI.

II. DATASET DESCRIPTION

In this paper, we use the benchmark sendmail system
call traces collected by the Computer Science department of
University of New Mexico. For detail procedures of generating
and collecting these traces in this dataset, readers are refereed
to [10], [11] and [14]. Briefly, normal and abnormal system
call traces exist in this dataset are summarized as follows:

• Normal traces: traces of normal activities of the sendmail
program include a trace of the sendmail daemon and
several traces generated from invocations of the sendmail
program in this dataset.

• Abnormal traces: traces generated and collected when
the program runs with abnormal activities consist of
two traces of the syslog-local intrusions, two traces of
the syslog-remote intrusions, two trace of the decode
intrusions, three traces of the sunsendmailcp (sscp) in-
trusions and two traces of unsuccessful intrusions (sm5x
and sm565a).

There are two column data in each system call trace file,
the data in the first column are the process IDs and the
data in the second column are the corresponding system
call code where each system call code stands for a specific
system operation. For example, as shown in Table I, 2668
and 1391 in first column are process IDs while 3, 5 and 6
in second column represent system operations ”open”, ”read”
and ”close”, respectively. We can look up these mappings in
a mapping file.

TABLE I
FRAGMENT OF SYSTEM CALL TRACE FILE

Process ID Code
· · · · · ·
2668 5
2668 3
· · · · · ·
1391 6
· · · · · ·

III. MULTI-MODULE ANOMALY DETECTION SCHEME

The proposed multi-module anomaly detection scheme con-
sists of three modules: Training Module, Detection Module and
Weak Anomaly Signal Processing Module.

Overall, the detection module online monitors the system
call trace log and uses a sliding window to continuously extract
the short system call sequences. For each short sequence, a
pattern value is calculated. If this pattern value is higher than
a predefined maximum threshold (denoted as Tmax) or lower
than a predefined minimum threshold (denoted as Tmin), it
means this sequence has a distinct normal or abnormal pattern
so we can directly identify this short system call sequence as
a normal activity sequence or an anomaly, respectively. Other-
wise, this short sequence is a weak anomaly signal sequence
and it will sent to the weak anomaly signal processing module
for further processing.

Taking Fig. 1 as an example, if Tmax = −5 and Tmin =
−10, the sequences with pattern values higher than −5 (e.g.,
the first normal sequence) or lower than −10 (e.g., the second
anomalous sequence) are directly identified as normal activity
sequences or anomalies, respectively. The sequences whose
pattern values fall into [−5,−10] (e.g., the first anomalous
sequence) are weak anomaly signal sequences and will be sent
to the weak anomaly signal processing module.

In the weak anomaly signal processing module, we enlarge
the pattern of the weak anomaly signal sequences to make
them more distinguishable by predicting their most probable
future system call sequences based on either the normal or
abnormal activity model generated in the training module.
Finally, we obtain the most probable extended system call

2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 1377

Training

Pn

Normal Merged
Trace

Abormal Merged
Trace

Normal Activity
Model

Calculate nP
s’

s’
Pn

eT
s

Pn < ?

aP
s

Model
Abormal Activity

Short Sequence Data Processing Online Monitored
System Call Log

s
PnCalculate minT

s
Pn < ? TmaxnP

s
 > ?

Extended Sequences
Most Probable Predict

aP
s

s
PanP

s
 < ?

Weak Anomaly Signal Processing Module

Detection Module

Training Module

Predict

Abnormal List

Normal List

Normal Activities

Anomalies

Anomalies Normal Activities

No No

Yes Yes

Calculate
No

Yes

No

Yes

Training

s

Fig. 2. Multi-Module Anomaly Detection Scheme

sequences through combining these predicted future sequences
with the given weak anomaly signal sequences. To detect
the anomaly signal based on these extended sequence, for
each extended sequence, a new pattern value is calculated and
compared with a new extended threshold.

The diagram of this multi-module anomaly detection
scheme is shown in Fig. 2 and some details of each module
will be presented in the following subsections.

A. Training Module

In training module, we aim to train two Markov models
called Normal Activity Model and Abnormal Activity Model
to characterize the normal and abnormal system behaviors by
using normal and abnormal historic system calls.

A Markov Model is a model with the special Markov
assumption: the probability distribution of the state at time
t+ 1 depends on the state at time t, and does not depend on
the previous states leading to the state at time t. Formally,

Pr (st+1 = it+1|st = it) = Pr (st+1 = j|st = i) = pi,j , (1)

where pi,j is the probability of being in a state j given its
previous state is i and called Transition Probability. Therefore,
given a state set Q, we can define a Markov model by a
Transition Probability Matrix M and a Initial Probability
Vector V as shown in Eq. (2) and Eq. (3), respectively.

M =

⎛
⎜⎜⎝

p1,1 p1,2 · · · p1,m
p2,1 p2,2 · · · p2,m

...
...

. . .
...

pm,1 pm,2 · · · pm,m

⎞
⎟⎟⎠ (2)

V = [p1, . . . , pi, . . . , pm] , (3)

where pi,j is the transition probability between states si and
sj , pi is the probability of the system being in state i at time
t = 0 (called Initial Probability), m is the cardinality of Q.

Since the normal system call traces consist of only normal
system operations but the abnormal system call traces consist
of both normal and abnormal system operations, directly
training the abnormal activity model by abnormal traces can
not characterize the anomalies correctly. To overcome this
problem, we divide the traces into a list of short sequence by
the following steps: (i) We sequentially merge all pre-labeled
historic normal traces in training dataset together to generate
a normal merged trace and also generate an abnormal merged
trace by the same way. (ii) The normal merged trace is scanned
by a sliding window to create a list of unique short system call
sequences, each of which is associated with a quantity value
indicating how many times this short sequence appears in the
normal merged trace. The resulted list is called Normal List.
(iii) We further scan the abnormal merged trace by the same
sliding window to generate an Abnormal List. Differently, for
each resulted short system call sequence, we first look it up
in the normal list; if we find a match in the normal list, we
discard this sequence; otherwise, we store it in the abnormal
list. Table II shows an example of normal list generated by a
sliding window with window size w = 3.

TABLE II
EXAMPLE OF NORMAL (OR ABNORMAL) LIST

Short Sequence 93, 94, 5 · · · 4, 50, 27 · · ·
Quantity Value 357 · · · 22 · · ·

Based on the normal and abnormal lists, we are able to
train the normal and abnormal activity Markov models through
treating each system call as a state si and the system call set
as Q, the transition probability and the initial probability can
be obtained by Eq. (4) and Eq. (5), respectively.

Pr (st+1 = j|st = i) = pi,j =
Ni,j

Ni

, i, j ∈ Q, (4)

Pr (s0 = i) = pi =
Ni

N
, i ∈ Q, (5)

where Ni,j is the number of system call i in the list followed
by a system call j; Ni is the number of system call i in the
list and N is the total number of system calls in the list.

Bayes parameter estimation can also be used to estimate the
transition probabilities and initial probabilities from historic
data. However, because of high computational cost, it is
not adopted in this work. Given enough historic data, the
estimation through Eq. (4) and Eq. (5) can be quite stable.

B. Detection Module

In the detection module, many existing intrusion detection
methods [18], [19], [20] can be used to calculate various
pattern values according to different requirements. To keep it
simple, a Markov-based intrusion detection method proposed

1378 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)

by [8], which uses the Sequence Probability as the pattern
value, is adopted in this work. The sequence probability
indicates how probable this sequence occurs in the given
Markov model and is defined as follows:

P
s (s1, . . . , sl) = ps1 ·

l∏
i=2

psi−1,si . (6)

where ps1 is the initial probability and psi−1,si is the transition
probability.

In [8], given a normal activity Markov model, a sequence
probability value (denoted as P s

n) is calculated for each short
sequence and compared with an unique threshold. If P s

n is
lower than the threshold, this sequence is identified as an
anomaly; otherwise, it is a sequence of normal activities.
However, this method encounters the weak anomaly signal
detection problem: the sequence probability values of some
anomalous sequences fall into the value range of normal
sequences so using a unique threshold is hard to accurately
distinguish the weak anomaly signal sequences.

In order to solve this weak anomaly signal detection prob-
lem, in our scheme, we pre-define two thresholds: the maxi-
mum threshold (denoted as Tmax) and the minimum threshold
(denoted as Tmin). The value of Tmax is defined so large that,
if the resulted P s

n of a short sequence is larger than Tmax, this
sequence is a sequence of normal activities with extremely
high certainty. Similarly, The value of Tmin is so small that,
if the resulted P s

n of a short sequence is smaller than Tmin,
this sequence is an anomaly with extremely high certainty.
Therefore, given a short sequence, it will be directly identified
as a normal activity sequence or an anomaly if its P s

n is larger
than Tmax or smaller than Tmin, respectively. Otherwise, this
short sequence is a weak anomaly signal sequence and will
be sent to weak anomaly signal processing module for further
processing.

C. Weak Anomaly Signal Processing Module

The weak anomaly signal processing module enlarges the
pattern of the weak anomaly signal sequence to make it more
distinguishable by predicting its most probable future system
call sequence based on a chosen Prediction Model.

The prediction model is either the normal or abnormal
activity model generated in the training module. For a given
weak anomaly signal sequence, its corresponding prediction
model is the one which matches this given sequence better.
Therefore, we calculate one more sequence probability value
of the given weak anomaly signal sequence based on the
abnormal activity model (denoted as P s

a) and compare it with
the previous resulted P s

n. If P s
a is larger than P s

n, it means
this short sequence matches the abnormal activity model better
than the abnormal activity model so we should use abnormal
activity model as its prediction model. Otherwise, the normal
activity model is chosen as the prediction model.

Now, we can utilize the selected prediction model to predict
the most probable future system call sequence. The most
probable future sequence is defined as the sequence that
matches the prediction model best (i.e., the one with the

maximum sequence probability among all possible sequences).
Therefore, given a weak anomaly signal sequence, a baseline
solution is to enumerate all possible future system call se-
quences with length n and iteratively calculate the sequence
probability values of these sequences according to Eq. (6)
where s1 is the last system call of the given weak anomaly
signal sequence. The future sequence with the highest value
is the most probable future system call sequence. However,
given a finite set of distinct kinds of system calls Q, there are
mn possible future sequences, where m = |Q|. Therefore, the
computational complexity of this solution is O(mn) which
is exponential to the future sequence length n and hence
intractable. To solve this problem, we further propose a
variation of Viterbi algorithm (named VV algorithm) to obtain
the most probable future system call sequence more efficiently
in O(m2n) times.

Finally, a most probable extended system call sequence
with the enlarged pattern is obtained through combining the
predicted most probable future sequence with the given weak
anomaly signal sequence. To detect the anomaly signal based
on these extended sequence, for each sequence, we calculate
a new sequence probability value (P s′

n) based on the normal
activity model and compared it with a new extended threshold
(Te) to identify this weak anomaly signal sequence as a normal
activity sequence (if P s′

n ≥ Te) or an anomaly (if P s′

n < Te).

IV. VARIATION OF VITERBI ALGORITHM

Apart from intrusion detection accuracy, runtime efficiency
is also very important for the proposed scheme. The detection
module online monitors the system call log to generate real-
time short sequences continuously which requires the weak
anomaly signal processing module to be able to predict the
future system call sequence instantaneously. Otherwise, we
can not stop the attacker’s hazardous operations on time and
the proposed anomaly detection scheme becomes meaningless.

Since the computational complexity of the baseline solution
is exponential and intractable, we further propose a variation
of Viterbi (VV) algorithm which can obtain the most probable
future system call sequences with length n (denoted as Sp (n))
more efficiently with O(m2n) time complexity.

Given a prediction Markov model defined by a set of distinct
kinds of system calls, Q, a transition probability matrix, M ,
and an initial probability vector, V , we first define PV (n, z)
to be the sequence probability value of the most probable
future system call sequence ending at system call v with
length n. Therefore, Sp (n) is the sequence with the value:
maxz={1,...m} PV (n, z) where m is the cardinality of Q.

Since the nth system call is fixed to be z, PV (n, z) is a
maximization over the first n− 1 future system calls and can
be represented as Eq. (7).

PV (n, z) = max
y1,...,yn−1={1,...m}

[
n−1∏
i=1

pyi−1,yi · pyn−1,z

]
, (7)

where yi is the variable of ith future system call and pyi−1,yi
is

the transition probability between variables yi−1 and yi. Since

2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 1379

VV Algorithm

Input: Markov model defined by Q, M and V ;
slast : the last monitored system call;
m : cardinality of Q;
n : sequence length.

Output: Sp (n) : most probable future sequence.

(i) Initial:
PV (0, slast) = 1; PV (0, others) = 0;

(ii) Recursion(i = 1, · · · , n):
PV (i, yi) = max

yi−1={1,...m}

[
PV (i− 1, yi−1) · pyi−1,yi

]
;

ptr(i, yi) = argmaxyi−1

[
PV (i− 1, yi−1) · pyi−1,yi

]
;

Store ptr(i, yi) and PV (i, yi) in matrices;
(iii) Termination:

ptr(n+ 1) = argmaxyn [PV (n, yn)];
Obtain Sp (n) by tracing ptr’s backward from ptr(n+ 1);

Return Sp (n);

Fig. 3. VV Algorithm

the value of pyn−1,z depends on yn−1 only, we can obtain a
recursive equation from Eq. (7) as follows:

PV (n, z) = max
yn−1={1,...m}

[
PV (n− 1, yn−1) · pyn−1,z

]
. (8)

Based on Eq. (8), we can compute PV (n, z) for any system
call, z ∈ Q, recursively. The pseudo-code of the developed
VV algorithm is shown in Fig. 3. In step (i), we initialize
that the probability of future sequences starting from the
last system call of online monitored sequence is 1 and the
probabilities of starting from other system calls are 0. we
apply Eq. (8) in step (ii) to recursively obtain PV (i, yi) where
PV (i − 1, yi−1) is known for all possible yi−1 ∈ Q by
the previous recursion. The value of PV (i, yi) is stored in
a m × n dynamic programming matrix while a pointer (ptr)
is associated with each PV (i, yi) and point to a system call
yi−1 which maximizes PV (i, yi). The algorithm stops at step
(iii) when we obtain the maxyn

[PV (n, yn)], assign the system
call yn which maximizes PV (n, yn) to the pointer ptr(n+1)
and trace pointers backward from ptr(n+1) and return Sp (n).

For each recursion, we need to first enumerate yi and then
enumerate yi−1 to find a yi−1 maximizing PV (i, yi) for each
yi ∈ Q so each recursion costs O(m2) times. Since there
are n recursions, the VV algorithm can obtain Sp (n) in
O(m2n) times. It is more efficient than the baseline algorithm
because it uses dynamic programming matrix to store the local
optimal values and avoid enumerating all possible sequences
and repeatedly calculating the same probability values.

V. EXPERIMENTAL STUDY

In this section, we conduct an experimental study on the
sendmail dataset described in Subsection II. We use the first
20% system calls in abnormal traces and 10% system calls
in normal traces as the testing data while other system calls
are used as the training data. We also set window sizes of
the sliding window in both the training module and the weak
anomaly signal processing module to be w = 3.

In order to evaluate the performance of the multi-module
anomaly detection scheme (called MADS in this section), we

 20

 40

 60

 80

 0 1 2 3 4

H
it

R
at

e
(%

)

False Alarm Rate Bound (%)

MADS MID

Fig. 4. MADS v.s. MID

have conducted the following evaluations: (i) we compare the
intrusion detection accuracy of MADS with that of directly us-
ing the Markov-based intrusion detection method (called MID
in this section) proposed by [8]; (ii) we further investigate the
effect of increasing the number of predicted future system calls
on the intrusion detection accuracy; (iii) we also evaluate the
runtime efficiency of the proposed VV algorithm comparing
with that of the baseline method.

The most important intrusion detection accuracy measure-
ment is Hit Rate. A hit is a true positive result: it occurs
when an abnormal system call sequence is correctly detected
as an intrusion. Therefore, the hit rate is defined as the number
of hits divided by the total number of abnormal system call
sequences and preferred to be as large as possible. Generally,
each different detection threshold will result a different “hit
rate” but also a different False Alarm Rate and increasing
detection threshold will enhance both of them. A false alarm
is a false positive result: it occurs when a normal system
call sequence is detected as an intrusion by error. Therefore,
the false alarm rate is defined as the number of false alarms
divided by the total number of normal system call sequences.
In practice, we normally require the false alarm rates to be
very small or not larger than a predefined tolerance bound.
Therefore, here, we evaluate the intrusion detection accuracy
of both MADS and MID by comparing their hit rates under
five different predefined small false alarm rate bounds: 0%,
1%, 2%, 3% and 4%.

Fig. 4 shows the hit rates of both MADS and MID with the
number of predicted future system calls in MADS being 2.
Overall, we can observe that the hit rates of the proposed
MADS outperform those of MID under all three different
bounds of false alarm rates. Especially, when the false alarm
rate bound is 0%, the hit rates of the proposed MADS is
more than twice of that of MID: the hit rate boosts from
less than 20% to more than 40%. Therefore, we can say
that the proposed MADS can greatly improve the intrusion
detection accuracy of the adopted Markov-based intrusion
detection system in terms of hit rates under small false alarm
rate bounds.

Furthermore, we vary the number of predicted future system
calls (i.e., n) in MADS from 1 to 3 to investigate its effect
on the intrusion detection accuracy. The results are shown
in Fig. 5. we find that, when n increases from 1 to 2, the

1380 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)

 20

 40

 60

 80

 0 1 2 3 4

H
it

R
at

e
(%

)

False Alarm Rate Bound (%)

n=1 n=2 n=3

Fig. 5. Varying the number of predicted future system calls in MADS

performance of MADS becomes better. However, when we
vary n from 2 to 3, the hit rates of MADS decrease under
all false alarm rate bounds. This is because the prediction
accuracy of future system calls in the weak anomaly signal
processing module falls down when n varies from 2 to 3.
Therefore, the performance of the proposed MADS depends
on the prediction accuracy of the prediction technique adopted
in the weak anomaly signal processing module.

TABLE III
RUNNING TIME OF FUTURE SEQUENCE PREDICTION

Sequence Length n=1 n=2 n=3

Baseline Method (ms) 3.7 66.2 5917.8
VV algorithm (ms) 5.2 8.6 11.7

To evaluate the runtime efficiency of the proposed VV
algorithm comparing with that of the baseline method, we
record their running time of predicting future sequences with
respect to various predicted sequence length n in Table III. We
find that, when n = 1, the running time of both the baseline
method and the VV algorithm are very short (only 3.7ms and
5.2ms, respectively). When n increases, the running time of
the baseline method grows exponentially and reaches up to
66.2ms (n = 2) and 5917.8ms (n = 3). On the contrary, the
corresponding running time of the VV algorithm is still very
small: only 8.6ms (n = 2) and 11.7ms (n = 3), respectively.
These results confirm the previous complexity analyses: the
computational complexity of the VV algorithm is linear to
n while that of the baseline method is exponential to n.
Therefore, we can assert that the proposed VV algorithm is
exponentially more efficient than the baseline method.

VI. CONCLUSION AND FUTURE WORK

This paper is to utilize the sequence prediction techniques to
solve the weak anomaly signal detection problem and improve
the performances of the existing intrusion detection systems.
A variation of Viterbi (VV) algorithm is proposed to predict
the future system call sequence exponentially more efficiently.
Experimental results demonstrate that: (i) the proposed scheme
can greatly improve the intrusion detection accuracy of the
existing intrusion detection system (e.g.,this Markov-based
intrusion detection method) in terms of hit rates under small
false alarm rate bounds; (ii) the performance of the proposed
scheme depends on the prediction accuracy of the adopted

prediction technique; (iii) the developed VV algorithm is much
more efficient than the baseline method.

In the future, we will investigate more types of prediction
and intrusion detection methods to further improve the intru-
sion detection accuracy in terms of hit and false alarm rates.

ACKNOWLEDGMENT

This work is supported by the Australian Research Council’s
Linkage funding scheme (project number LP100200538).

REFERENCES

[1] J. Evers. (2002) Computer crime costs $67 billion, fbi says,. [Online].
Available: http://www.ctan.org/

[2] E. Mills. (2009) Cybercrime cost firms us$1 trillion globally. [Online].
Available: http://www.zdnetasia.com/news/

[3] P. Garcia-Teodoro, J. E. Dı́az-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers & Security, vol. 28, no. 1-2, pp.
18–28, 2009.

[4] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detec-
tion,” in USENIX Security Symposium, 1998, pp. 1–6.

[5] U. Lindqvist and P. A. Porras, “Detecting computer and network misuse
through the production-based expert system toolset (p-best),” in IEEE
Symposium on Security and Privacy (S&P), 1999, pp. 146–161.

[6] N. Ye, X. Li, and S. M. Emran, “Decision tree for signature recogni-
tion and state classification,” in IEEE Systems, Man and Cybernetics
Information Assurance & Security Workshop, 2000, pp. 1–6.

[7] X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly
intrusion detection using program sequences of system calls,” in IEEE
International Conference on Network (ICON), 2003, pp. 531–536.

[8] N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the markov-chain
model for cyber-attack detection,” IEEE Transactions on Reliability, pp.
116–123, 2004.

[9] Y. Feng, F. Han, X. Yu, Z. Tari, L. Li, and J. Hu, “Terminal sliding mode
observer for anomaly detection in tcp/ip networks,” in International
Conference on Computer Science and Network Technology (ICCSNT),
vol. 1, 2011, pp. 617–620.

[10] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in IEEE Symposium on Security and Privacy
(S&P), 1996, pp. 120–128.

[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, pp.
151–180, 1998.

[12] J. Hu, X. Yu, D. Qiu, and H.-H. Chen, “A simple and efficient hidden
markov model scheme for host-based anomaly intrusion detection,”
Network Magazine of Global Internetworking, vol. 23, pp. 42–47, 2009.

[13] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection
system using support vector machines and hierarchical clustering,” The
VLDB Journal, vol. 16, no. 4, pp. 507–521, 2007.

[14] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in IEEE Symposium on Security
and Privacy (S&P), 1999, pp. 133–145.

[15] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system
call detection,” ACM Transactions on Information and System Security,
vol. 9, no. 1, pp. 61–93, 2006.

[16] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion
detection using parallel execution and monitoring of program variants in
user-space,” in the 4th ACM European conference on Computer systems
(EuroSys), 2009, pp. 33–46.

[17] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 381–395, 2010.

[18] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in IEEE
Symposium on Security and Privacy (S&P), 2001, pp. 144–155.

[19] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” in IEEE Symposium on Security
and Privacy (S&P), 1999, pp. 120–132.

[20] A. Tajbakhsh, M. Rahmati, and A. Mirzaei, “Intrusion detection using
fuzzy association rules,” Applied Soft Computing, vol. 9, no. 2, pp. 462–
469, 2009.

2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 1381

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

