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Abstract—Destination prediction is an essential task for many
emerging location based applications such as recommending
sightseeing places and targeted advertising based on destination.
A common approach to destination prediction is to derive the
probability of a location being the destination based on historical
trajectories. However, existing techniques using this approach
suffer from the “data sparsity problem”, i.e., the available
historical trajectories is far from being able to cover all possible
trajectories. This problem considerably limits the number of
query trajectories that can obtain predicted destinations. We
propose a novel method named Sub-Trajectory Synthesis (SubSyn)
algorithm to address the data sparsity problem. SubSyn algo-
rithm first decomposes historical trajectories into sub-trajectories
comprising two neighbouring locations, and then connects the
sub-trajectories into “synthesised” trajectories. The number of
query trajectories that can have predicted destinations is ex-
ponentially increased by this means. Experiments based on real
datasets show that SubSyn algorithm can predict destinations for
up to ten times more query trajectories than a baseline algorithm
while the SubSyn prediction algorithm runs over two orders of
magnitude faster than the baseline algorithm. In this paper, we
also consider the privacy protection issue in case an adversary
uses SubSyn algorithm to derive sensitive location information
of users. We propose an efficient algorithm to select a minimum
number of locations a user has to hide on her trajectory in
order to avoid privacy leak. Experiments also validate the high
efficiency of the privacy protection algorithm.

I. INTRODUCTION

As the usage of smart phones and in-car navigation systems

becomes part of our daily lives, we benefit increasingly from

various types of location based services (LBSs) such as route

finding and location based social networking. A number of

new location based applications require destination prediction,

for example, to recommend sightseeing places, to send targeted

advertisements based on destination, and to automatically set

destination in navigation systems. Fig. 1 provides a schematic

with the lines representing roads and the circles representing

locations of interests (They may be road intersections, sight-

seeing places, shopping centres, etc.). If one drives from l1 to

l4, an LBS provider may predict the most probable destinations

to be l7, l8 and l9 based on past popular routes taken by other

drivers. As a result, the LBS provider can push advertisements

of products currently on sale at those locations.

A common approach to destination prediction is to make

use of historical spatial trajectories [30] of the public, available

from trajectory sharing websites [10, 22], or large sets of taxi

trajectories [21]. If an ongoing trip matches part of a popular

route derived from historical trajectories, the destination of

the popular route is very likely to be the destination of

the ongoing trip (we refer to the ongoing trip as the query

trajectory). Shown in Fig. 1 are five historical trajectories:

T1 = {l1, l2, l5, l6, l9}, T2 = {l6, l3, l2}, T3 = {l4, l5, l8},
T4 = {l9, l8, l7}, and T5 = {l1, l4, l7}. Each trajectory is

represented by a different type of line. For instance, a trip is

taken from l1 to l4, and this query trajectory {l1, l4} matches

part of the historical trajectory T5. Therefore, the destination of

T5 (i.e., l7) is the predicted destination of the query trajectory.

In practice, each trajectory here may be associated with a

weight denoting the number of historical trajectories that

exactly match this one, and the most popular trajectories are

used for destination prediction. This idea has been described

in further details in [31].
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Fig. 1. An example of destination prediction

However, the above method has a significant drawback.

A location l can be predicted as a destination only when

the query trajectory matches a historical trajectory and the

destination of the historical trajectory is l. In practice, l8 and

l9 are also very likely to be the destination of the query

trajectory, but will not be recommended to the user due to

the limitation of the historical dataset. Moreover, if the query

trajectory continues to l5, the above method will not be able to

predict any destination since no historical trajectory contains

the trajectory {l1, l4, l5}. We refer to this phenomenon as the

data sparsity problem. This problem is inevitable in practice

due to the following reasons. First, given a road network,
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TABLE I
FREQUENTLY USED SYMBOLS

Symbol Explanation

ls, lc, ld Starting, current, destination locations

D The historical trajectory dataset

g Granularity of a grid graph

ni(, ns, nc, nd) ith (, starting, current, destination) node

pij Transition probability from ni to adjacent nj

pi→k Total transition probability from ni to nk

Ti(,j) Trajectories in D that contain {ni(, nj)}

Td∈nj
Trajectories in D with destination lying in nj

T p Partial or query trajectory from ns to nc

Ls→d Length of Ts→d in ℓ1 space grid graph

Lde,c→d Detour distance from nc to nd

M,Mij Transition matrix and its entry

the number of possible routes between all pairs of origin-

destination is prohibitively large (exponential to the number of

edges in the network), and currently the largest available real-

life trajectory dataset covers only a tiny portion of it. Second,

even trips with the same origin-destination pair may vary on

their routes, making it unlikely to have identical trajectories.

In this paper, we propose a novel method to address the

data sparsity problem. To begin with, we decompose all the

trajectories into sub-trajectories comprising two neighbouring

locations, then the sub-trajectories are connected together into

“synthesised” trajectories. As long as the query trajectory

matches part of any synthesised trajectory, the destination of

the synthesised trajectory can be used for destination predic-

tion. By this means, the coverage of trips on which we can

make destination predictions is exponentially increased. The

underlying process is formulated by a Markov model quantify-

ing the correlation between adjacent locations with transition

probabilities. We can compute the probability of reaching all

the reachable locations from a given origin, and the top ranked

ones are returned as predicted destinations. We call the above

method the Sub-Trajectory Synthesis (SubSyn) algorithm. For

the aforementioned query trajectory {l1, l4, l5, l6}, SubSyn

algorithm will be able to predict other destinations such as

l8 and l9 since they can be synthesised using sub-trajectories

of T1, T3, and T5. The outcome of the destination prediction

process will depend on the transition probabilities and the

number of top destinations to be returned.

While SubSyn algorithm largely enhances the destination

prediction capability of LBS providers, it can also be used

by a malicious party to derive destinations which users do

not wish to disclose such as homes and hospitals. Location

based social networks such as Foursquare and Facebook Places

allow users to automatically check in at locations they have

visited [4, 7]. Using Fig. 1 as an example, a user leaves her

workplace at l1 and goes to a restaurant at l4, then goes to a

café at l6 before heading home at l9. She checks in at l1, l4
and l6 sequentially. This allows for her trajectory {l1, l4, l6}
to be revealed publicly on the social network. Suppose l9 is

a popular living area and plenty of historical trajectories go

to l9 from l6; even though she does not check in at her home

address, an adversary can predict her destination to be l9 using

SubSyn algorithm. Trajectory sharing websites and trajectory

publication for data mining purposes also pose similar dangers.

In this paper, we also investigate on how to counter any

privacy breach caused by destination prediction using algo-

rithms like SubSyn. In particular, a user may choose not to

check in (or publish) certain locations to prevent adversaries

from deriving her destination. In the previous example, the

user may manually choose not to check in at l6 in order to

reduce the probability of l9 being the destination below a

certain threshold. To mitigate the disturbance to the check-

in service, we study which locations in the trajectory the user

should not check in such that the number of locations that the

user does not check in is minimised.

We make the following specific contributions in this paper:

• We identify the data sparsity problem in destination

prediction and propose a novel Sub-Trajectory Synthesis

(SubSyn) algorithm to address this problem. SubSyn

algorithm decomposes historical trajectories into sub-

trajectories and connect them into “synthesised” trajecto-

ries for destination prediction. This process is formulated

based on a Markov model.

• SubSyn algorithm also achieves very high runtime ef-

ficiency because most values are directly fetched from

pre-computed matrices. This is much faster than the

baseline algorithm, which has to perform a large number

of computation in order to find all matching trajectories.

• Concerned with potential privacy leak from abusive use

of SubSyn algorithm, we further propose an algorithm

named End-Points Generation Method to help identify

locations on a trajectory which a user should not publish

in order to retain confidential locational information.

• We conduct extensive experiments using real taxi trajec-

tory datasets to investigate the effectiveness and efficiency

of both SubSyn algorithm and the End-Points Generation

Method for privacy protection. The results show that:

– compared with a baseline algorithm, SubSyn algo-

rithm can predict destinations for up to ten times

more query trajectories while the SubSyn prediction

algorithm runs over two orders of magnitude faster.

– compared with a naive algorithm, the End-Points

Generation Method is more than two orders of mag-

nitude faster.

The remainder of the paper is organised as follows: Sec-

tion II discusses related work and preliminaries. Our proposed

SubSyn algorithm is presented in Section III. Section IV

presents the privacy issue and our algorithm for privacy

protection. Experimental results are reported in Section V.

Section VI concludes the paper. Frequently used symbols are

listed in Table I.

II. RELATED WORK AND PRELIMINARIES

In this section, we first discuss existing work on destination

prediction. Then we focus on a Bayesian inference based

approach to the destination prediction problem. Finally, we

discuss the methods of protecting users’ privacy.

255



A. Destination Prediction

Although most destination prediction studies make use of

historical trajectories, their focuses have mainly followed two

streams: (i) using external information in addition to historical

trajectories to help improve the accuracy of predicted desti-

nations; (ii) personalised destination prediction for individual

users. We describe each stream in more details below.

Employing external information in addition to historical

trajectories can often enhance the prediction accuracy. For

example, distributions of different districts (i.e., ground cover),

travel time, trajectory’s length [13–15], accident reports, road

condition, and driving habits [31], have been incorporated into

Bayesian inference to compute the probabilities of predicted

destinations. Similarly, context information such as time-of-

day, day-of-week, and velocity has been incorporated as the

features in training the Bayesian network model for predic-

tion [9]. The major inspiration behind these studies is that

certain travelling pattern which fits into the acknowledged

external settings shall bring higher possibilities to locations

corresponding to those external settings in the historical

dataset. However, since these studies mainly focus on the

benefits brought by external information, their solutions are

of little interest in the absence of the aforementioned ad-hoc

external information. Our work considers a generic setting

where only a historical trajectory set is assumed, and our focus

is to solve the data sparsity problem which cannot be solved

by adding external information. Therefore, the above studies

are not applicable to our problem.

Personalised destination prediction trains prediction mod-

els using historical trajectories from an individual and then

predicts destinations for this same individual. Thus, these

predictions for the same query trajectory from different users

may vary. Natalia and Chris [17] and Patterson et al. [20]

used a Bayesian method to predict destination for specific

individuals based on their historical transport modes. Markov

model has been widely applied in predicting destinations

for a specific individual as well [2, 3, 16, 23]. Tiesyte and

Jensen [25] proposed a Nearest-Neighbour Trajectory (NNT)

method that utilised distance measures to identify the historical

trajectory which was the most similar to the current partial

trajectory. Chen et al. [6] used a tree structure to represent

the historical movement patterns and then matched the current

partial trajectory by stepping down the tree. All these studies

focused on predicting the repeated destinations of one or

a group of specific individuals based on their own habits

and historical travelling records. Our work considers a query

trajectory from an unknown individual (without available per-

sonalised information). This is different from the personalised

destination prediction studies. Therefore their solutions would

be inapplicable to the data sparsity problem.

Amongst the above studies, Bayesian inference is the most

popular framework used for deriving the probability of des-

tinations based on historical trajectories [14, 15, 17, 20, 31].

Our approach also follows this framework. In the following

subsection, we describe the Bayesian inference framework in
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T4
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n1 n2 n3

n4 n5 n6

n7 n8 n9

(a) 3× 3 grid on the example

n1 n2 n3

n4 n5 n6

n7 n8 n9

p14
p45 p56

(b) 3× 3 Markov model

Fig. 2. Grid graph representation and Markov model

more details and present a naive destination prediction method

under this framework. It will be adapted to the baseline method

for comparison in our experimental study.

B. Bayesian Inference Framework for Predicting Destination

Most studies [14, 27, 31] using the Bayesian inference have

employed a grid representation of the data space including

the road network as follows. The map is constructed as a

two-dimensional grid consisting of g × g square cells. The

granularity of this representation is a cell, i.e., all the locations

within a single cell are considered to be the same object.

Each cell has the side length of 1 and adjacent cells have the

distance of 1. The whole grid is modelled as a graph where

each cell corresponds to a node in the graph. A trajectory

can be represented as a sequence of nodes according to the

sequence of locations of the trajectory. An example of a 3× 3
grid graph is given in Fig. 2a, where the trajectory T1 can

be represented as {n1, n2, n5, n6, n9}. By representing the

trajectories using nodes in a grid graph, similar trajectories

are considered identical because a cell is the granularity of

the graph. For example, in Fig. 2a, T0 and T3 are identical,

both of which are represented as {n4, n5, n8}. It is easy to

observe that when the area of each grid cell becomes smaller,

the different trajectories become more distinguishable from

each other in the grid graph model.

Since query trajectories are incomplete trajectories whose

destinations should be predicted by prediction algorithms, we

denote them by partial trajectories, i.e., T p. With a grid

representation, two trajectories T1 and T2 have exact match

with each other if and only if their sequences of nodes are

identical, denoted by T1 = T2; a partial trajectory T p partially

matches a trajectory T if and only if their sequences start

from the same node and the node sequence of T p is fully

contained by the node sequence of T , denoted by T p ⊂ T .

In the example shown in Fig. 2a, T p = {n1, n4} partially

matches T5 = {n1, n4, n7}.
The Bayesian inference framework for destination predic-

tion problem contains two phases: a training phase where the

historical trajectories are mined offline and a prediction phase

where a given query trajectory is analysed and answered with

predicted destinations online [14, 15, 28, 31]. Specifically,

the probability of a node nj being the destination can be

computed as the probability that nj contains the destination

location ld, conditioning on the query trajectory T p. Formally,

the probability is computed using Bayer’s rule as
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P (d ∈ nj |T
p) =

P (T p|d ∈ nj)P (d ∈ nj)
g2
∑

k=1

P (T p|d ∈ nk)P (d ∈ nk)

, (1)

where the prior probability P (d ∈ nj) can be easily computed

as the number of trajectories terminating at nj divided by the

number of trajectories in the dataset. Formally,

P (d ∈ nj) =
|Td∈nj

|

|D|
, (2)

where |D| is the cardinality of the training dataset, and

|Td∈nj
| is the number of trajectories in D that terminates at

a location in nj . As indicated by (2), only locations that are

the destinations of historical trajectories will have non-zero

prior probabilities, reflecting the fact that only locations that

are popular among users are of interests.

Therefore, the problem lies in computing the posterior prob-

ability P (T p|d ∈ nj). Ziebart et al. [31] described a method

which first counts the number of trajectories satisfying two

conditions: (i) it is partially matched by the query trajectory

T p; (ii) it terminates at a location in nj . The count is then

divided by the number of trajectories that terminate at a

location in nj to serve as the posterior probability. Formally,

P (T p|d ∈ nj) =
|{Td∈nj

|T p ⊂ Td∈nj
}|

|Td∈nj
|

, (3)

where |{Td∈nj
|T p ⊂ Td∈nj

}| denotes the number of trajec-

tories that satisfy both aforementioned conditions and |Td∈nj
|

denotes the number of trajectories that terminate at a location

in nj . We refer to the above method as the ZMDB method

after the authors’ names of [31], which formulates the idea

described in the second paragraph of Section I. As discussed

there, this method may suffer from the data sparsity problem,

i.e., the fact that the query trajectory cannot partially match any

trajectory in D. This makes |{Td∈nj
|T p ⊂ Td∈nj

}| zero and

all nodes to have zero probability of being the destination, i.e.,

P (d ∈ nj |T
p) = 0. Consequently, no predicted destination

can be returned.

C. Privacy Protection in Trajectory Publication

On protecting the users from privacy leak caused by tra-

jectory based spatial-temporal queries, there are mainly four

approaches. First, by clustering the trajectories within the

same time period using the distance amongst locations as

an indicator, trajectories can be aggregated in groups and a

representative trajectory can be computed for the group, essen-

tially hiding the original trajectories [1]. Second, in addition

to grouping trajectories, the generalisation-based approach

will further pick atomic points from the group and generate

trajectories needed by the spatial-temporal queries based on

these points [18]. Third, by iteratively suppressing (deleting)

locations in trajectories, the results of spatial-temporal queries

can also be tuned to exclude privacy concerns [24]. Fourth,

grouping neighbouring cells in a grid into groups also me-

liorates the anonymisation of the original trajectories [8]. Our

study on privacy protection against destination prediction lies

in the third group since it attempts to delete locations in the

query trajectories to alter the prediction result. The difference

between our study and existing studies is that we focus on

preventing locations with privacy concerns from appearing in

the prediction results produced by SubSyn algorithm, where

we are able to leverage the distinct property that only end-

points of a trajectory would affect the prediction results in

order to dramatically eliminate unnecessary search space. Pri-

vacy protection and trajectory mining have also been studied

in other contexts such as moving KNN query [11, 19] and

group NN query [12]. [30] contains a comprehensive survey

on computation with spatial trajectories.

III. DESTINATION PREDICTION BASED ON

SUB-TRAJECTORY SYNTHESIS

In order to overcome the data sparsity problem, we propose

a novel Sub-Trajectory Synthesis (SubSyn) algorithm, which

uses a Markov model to offline prepare the probabilities

needed to efficiently compute the posterior probability for

any given query trajectory online. Following the general

framework mentioned in Section II-B, we use a grid graph

to abstract the map and apply Bayer’s rule as the prediction

tool, i.e., using (2) to compute the prior probability and (1)

to predict the probability of being a destination. Hence, the

focus of this section is computing the posterior probability

using SubSyn algorithm. We will first present the details of

constructing Markov model to obtain transition probabilities

between adjacent nodes in the grid graph. Next, we will

propose an approach to synthesise the sub-trajectories using

these transition probabilities. Finally, we will formulate the

posterior probability equation P (T p|d ∈ nj).

A. Constructing the Markov Model

To fully leverage the information of historical trajectories,

a Markov model is constructed by associating a state to each

node ni in the grid graph. Two directed transitions of states

corresponding to adjacent nodes ni and nj are established, i.e.,

ni to nj and nj to ni. The transition probability of travelling

from a location in ni to a location in nj is denoted by pij .

Fig. 2b shows an example of the Markov model associated

with the example in Fig. 2a. These transition probabilities are

conditional probabilities and can be computed as the number

of trajectories that contain the sequence {ni, nj} divided by

the number of trajectories that contain the node ni. Formally,

pij = P (nj |ni) =
|Ti,j |

|Ti|
. (4)

For each pair of adjacent nodes in the grid graph, we

compute the transition probabilities offline using (4). These

probabilities are stored as entries of a two-dimensional g2×g2

matrix where one dimension corresponds to the node of current

state and the other dimension corresponds to the next state. In

the following sections, we denote the matrix and its entries by

the transition matrix M and Mij , respectively. Matrix (5) is

the transition matrix of the example presented in Fig. 2.

As indicated by (4), since a first order Markov model is

used here, only the current state determines the probability
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of transiting to the next state. Higher order Markov models

could be applied by involving previous states in addition to the

current state in computing the probabilities. However, higher

order models raise serious concerns when there is insufficient

number of trajectories that support the computation of higher

order transition probabilities [5] [3]. Following the practice of

previous work, we also use the first order Markov model.

M =



























0 p12 0 p14 0 0 0 0 0
p21 0 p23 0 p25 0 0 0 0
0 p32 0 0 0 p36 0 0 0
p41 0 0 0 p45 0 p47 0 0
0 p52 0 p54 0 p56 0 p58 0
0 0 p63 0 p65 0 0 0 p69
0 0 0 p74 0 0 0 p78 0
0 0 0 0 p85 0 p87 0 p89
0 0 0 0 0 p96 0 p98 0



























(5)

B. Sub-Trajectory Synthesis

In the previous subsection (Section III-A), a Markov model

based transition matrix M is constructed and filled with

probabilities of travelling from a node to its adjacent node.

This process, when inspected from another approach, is ef-

fectively the process of decomposing each trajectory in D

into a set of sub-trajectories with length 2 (i.e, ordered pairs

of neighbours). For instance, the trajectory T1 in Fig. 1 is

decomposed into T
p
1,2, T

p
2,5, T

p
5,6, and T

p
6,9 which in turn

contribute to the transition probabilities p12, p25, p56, and

p69, respectively. To synthesise sub-trajectories is to utilise

the transition matrix M to compute the probability of being a

destination of a query trajectory. The actual methods of sub-

trajectory synthesis are presented in this subsection. Equations

derived in this subsection will be incorporated in Section III-C

to formulate the posterior probability P (T p|d ∈ nj).
Synthesis of Detouring Path towards Destination: A

useful value that can be generated from M is the sum of the

probabilities of all possible paths between two nodes ni and

nk. The following example will demonstrate the concept of

this probability. By referring to (5) and Fig. 2, the probability

of travelling from n1 to n6 is found to be zero in M (i.e.,

M16 = 0) because M stores the probability of travelling

from one node to another in exactly one step, and there is no

way of travelling between these two nodes within one step.

Furthermore, when M is multiplied by itself to form M2,

its entries are the probabilities of travelling from one node

to another in two steps. In general, M r (r ∈ [0,∞)) holds

the probabilities of transition from one node to another in

exactly r steps (i.e., M r holds r-step transition probabilities).

Since the ℓ1 distance between n1 and n6 (i.e., L1→6) is 3,
the probability of travelling from n1 to n6 via all the shortest

paths can be found in matrix entry M3
16. Intuitively, we wish

to use this property to replace terms in both the numerator

and denominator in (3). Two problems also remain: (i) the

ℓ1 distance does not necessarily correspond to the actual

travelling distance from n1 to n6 because sometimes a small

detour is taken due to various reasons. Hence we wish to find

the sum of r-step transition probabilities of various steps; (ii)

the number of paths from one node to another is infinitely large

without restrictions, i.e., r ∈ [L1→6,∞). By examining the

dataset used in our experiment, it is found that the distances

of most trips do not exceed 1.2 of the ℓ1 distance between

the starting and finishing nodes. In other words, the detour

distance Lde is, in most cases, less than 0.2 of the ℓ1 distance

of a trip. We set Lde,i→k to be ⌈0.2Li→k⌉ as a typical value

of detour distance. Therefore we define the total transition

probability as follows.

Definition 1: Total Transition Probability The total tran-

sition probability of travelling from one node ni to another

node nk, denoted by pi→k
1, is the sum of the r-step transition

probabilities of all possible paths (with the detour distance

restriction) between ni and nk. Formally:

pi→k =

Li→k+Lde,i→k
∑

r=Li→k

M
r
ik (6)

= M
Li→k

ik +M
Li→k+1
ik + · · ·+M

Li→k+Lde,i→k

ik .

In the equation above, the last term after expanding the

summation equation, M
Li→k+Lde,i→k

ik , gives the probability of

travelling from ni to nk in exactly Li→k+Lde,i→k steps. This

term is our longest distance restriction obtained by examining

our experiment dataset. In (5) and Fig. 2, p1→6 = M3
16+M4

16

since L1→6 = 3 and Lde,1→6 = 1. The usage of (6) will

be revealed in the following subsection (Section III-C) when

formulating the posterior probability equation.

While (6) is in its simplest form, it is not computationally

friendly. For a 30×30 grid graph2, M becomes a 302×302 =
900 × 900 matrix. For a typical travel distance of 10 nodes,

pi→k = M10
ik +M11

ik +M12
ik (12 = ⌈10× 1.2⌉) which means

that matrix multiplication operation needs to be performed on

the huge matrix M more than 30 times where each matrix

multiplication requires O(n2.3736) (n = 900) time complexity

[26]. While already inefficient, the same operation needs to be

carried out for all pairs of nodes {ni, nk} (9002 ≈ 8.1× 105

pairs). It is therefore infeasible in terms of running time. A

tailored and efficient algorithm is introduced to solve the afore-

mentioned issues that are presented to us. We use pseudo-code

in Algorithm 1 to summarise the procedure (named SubSyn-

Training) described below. As the name suggests, this stage

is done as a pre-computation training stage which allows the

actual online query stage to be processed instantaneously. The

runtime efficiency measurements are presented in Section V.
Firstly, Equation (6) is reformed so that few redundant

computations are carried out.

pi→k =

Li→k+Lde,i→k
∑

r=Li→k

M
r
ik

= M
Li→k

ik

Lde,i→k
∑

r=0

M
r
ik (7)

= M
Li→k
ik ·

(

M
0
ik +M

1
ik + · · ·+M

Lde,i→k

ik

)

.

1Note the difference between pi→j and pij . The latter is the transition
probability between two adjacent nodes, and its definition was given in (4).

230 × 30 grid graph gives the best accuracy in our experimental study.
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For the purpose of explanation, we use a 30×30 grid graph

as an example without any loss of generality. Since the longest

distance max (Li→k) = L1→900 is 2 × (30 − 1) = 58, the
maximum possible value of Lde,i→k = ⌈0.2Li→k⌉ is therefore
⌈0.2×58⌉ = ⌈11.6⌉ = 12. By taking advantage of the concept

of dynamic programming, an array of size 13 can be used to

store all M r, r ∈ [0, 12] which are computed in ascending

exponent order (Algorithm 1: lines 5-6) such that only 11

matrix multiplications are required since we already have M1

and M0 is the identity matrix I . Afterwards, we sequentially

add each array element to the next element to form
∑i

r=0 M
r

(second factor in (7)) where i is an array index (Algorithm 1:

lines 7-8). The benefit is evident because all possible values

of
∑Lde,i→k

r=0 M r
ik can be directly retrieved from this array for

further computations.

Algorithm 1: SubSyn-Training(D, g)

1 MT ← 0; // total transition matrix
2 n← ⌈0.2× 2(g − 1)⌉; // maximum detour distance
3 A[n+ 1]← I; // define an array to store

∑n
r=0 M

r

4 A[1]←M ← D; // construct transition matrix

5 for i← 2 to n do

6 A[i]←M · A[i− 1]; // A[i] now holds M i

7 for i← 1 to n do

8 A[i]← A[i] +A[i− 1]; // A[i] now holds
∑i

r=0 M
r

9 list← ∅; // a list to store all node pairs
10 foreach ni in grid graph do
11 if Mi∗ contains only zero entries then

12 continue;

13 foreach nj in grid graph do

14 if M∗j contains only zero entries then
15 continue;

16 add node pair (ni, nj) to list;

17 sort list; // increasing order of ℓ1 distance

18 Mpower ←M ; // matrix to store intermediate result

19 MT
temp ←Mpower ·A[1]; // matrix to store intermediate result

20 Lprev ← 1 ; // record distance of previous iteration
21 foreach (ni, nj) ∈ list do
22 while Li→j >= Lprev + 1 do
23 Mpower ← M ·Mpower ;

24 MT
temp ←Mpower ·A[Lde,i→j ];

25 Lprev++;

26 MT
ij ←MT

temp,ij ; // i.e., pi→j

return: M and MT

Regarding the first factor MLi→k

ik in (7), we could use the

same strategy except that in order to store this term for all

pairs of nodes, too much memory is required, especially in

a fine grid. Specifically, in a 30 × 30 grid graph, each M

requires 302× 302× 8Bytes ≈ 6.1MB of storage space. Since

the maximum ℓ1 distance in such a grid graph is 58, the

total amount of memory required will exceed 350MB (i.e.,

58 × 6.1MB). When using a finer grid graph, the amount of

memory required increases rapidly. For instance, a 50×50 grid

graph will require 4.6GB of memory to store all M r, and an

80×80 grid graph will require 48GB. Therefore we need to

seek a scalable and robust solution. Fortunately, these matrices

do not have to be stored. Instead, we enumerate all pairs of

nodes in the grid graph, sort these pairs in ascending order of

their distance between each other, and compute pi→k in this

order (Algorithm 1: lines 9-17). Using Fig. 2 as an example,

the all pairs of nodes and their distances are generated to be

{n1, n2}(1), {n1, n4}(1), · · · , {n1, n3}(2), · · · , {n2, n6}(2),
· · · , {n1, n8}(3), · · · ,{n1, n9}(4), {n9, n1}(4). In order to

compute the total transition probability of each pair, M1 and
∑1

r=0 M
r
ik are retrieved from memory, and they are multiplied

together to form a matrix containing pi→k of distance 1

(Algorithm 1: lines 18-19). The total transition probabilities

of all pairs of distance 1 can be obtained directly from this

matrix (Mpower in Algorithm 1). After all pairs of distance 1

are obtained,M2 is computed by multiplyingM , and a matrix

containing pi→k of distance 2 is obtained (Algorithm 1: lines

22-25). Utilising this algorithm, only less than 100 matrix

multiplications are carried out (in the case of a 30 × 30 grid

graph) to compute all total transition probabilities, whereas the

intuitive approach requires millions of matrix multiplications.

During the process, each found pi→k is stored in a separate

matrix MT (Algorithm 1: line 26) which we call the total

transition matrix and it holds the same number of entries as

the transition matrix M .

In the process of enumerating all pairs of nodes, more com-

putational steps could be eliminated by pruning unpromising

pairs of nodes. For two nodes ni and nk, if either the entire row

containing ni, Mi∗, or the entire column containing nk, M∗k

comprises only zero entries, the pair is discarded (Algorithm 1:

lines 11-12, 14-15). It indicates a lack of training data in these

nodes and the probability is always confined to zero in such

case. Hence there is no need to compute their total transition

probabilities. The running time of the algorithm is examined

in the experiment section (Section V) and is found to be totally

acceptable.

The memory space occupied by SubSyn-Training is trivial

as explained below. By referring to Algorithm 1, the memory

space needed is (⌈0.2 × 2(g − 1)⌉ + 5) · g4 × 8Bytes. (i.e.,
A[n + 1], M , Mpower, M

T , MT
temp, and list). In a 30 × 30

grid graph, the space needed is 105MB, making the algorithm

implementation feasible in most modern computers.

Synthesis of Path for Query TrajectoryWe provide a def-

inition of path probability which will be used to compute the

posterior probability. The path probability is the probability of

a person travelling from one location to another via a specific

path. Typically the path is the query trajectory provided by a

user. The value of the path probability can be obtained through

multiplying the transition probabilities between all pairs of

nodes in this partial path T p. For example, given the transition

matrixM , the path probability of moving from a location in n1

to another location in n6 via the path T
p
1,4,5,6 can be obtained

as follows: P (T p
1,4,5,6) = p14 · p45 · p56 where p14, p45, and

p56 are the transition probabilities in the matrix M between

consecutive and adjacent3 node pairs {n1, n4}, {n4, n5}, and
{n5, n6}, respectively. In general, given any partial trajectory

3consecutive nodes are two nodes next to each other in a trajectory; adjacent
nodes are two nodes next to each other in a grid graph.
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T
p
1,2,··· ,k, the definition of path probability is:

P (T p) = P (T p
1,2,··· ,k) =

k
∏

i=1

pi(i+1). (8)

When the sequence of nodes in a query trajectory does not

fall into adjacent nodes, the transition probability would be

zero. In such cases we use a linear interpolation to fill the gap

between two non-adjacent consecutive nodes.

C. Computing the Posterior Probability

After defining the total transition probability in (6) and

the path probability in (8), given a query trajectory T p, we

calculate the posterior probability of a user travelling from

the staring node ns to the current node nc via T
p conditioned

on the destination being in node nj by (9):

P (T p|d ∈ nj) =
P (T p) · pc→j

ps→j

, (9)

where P (T p) is the path probability of the given partial

trajectory T p; pc→j is the total transition probability of moving

from the current node of T p, nc, to a predicted destination

d ∈ nj; and ps→j is the total transition probability of travelling

from the starting node of T p, ns, to a predicted destination

d ∈ nj .

The posterior probability is used when a user issues a

query to compute destination probabilities. We summarise the

SubSyn-Prediction algorithm and present the pseudo-code in

Algorithm 2. Given a transition matrix M , a total transition

matrix MT generated from taxi trajectories in a grid graph,

and a partial query trajectory T p, the overview of the SubSyn-

Prediction algorithm is as follows: (i) We first calculate the

path probability of the partial travelling trajectory T p using

(8); (ii) Then, for each node nj , we calculate the posterior

Algorithm 2: SubSyn-Prediction
(

M,MT , T p
)

1 list← ∅; // a list to store the output
2 construct path probability P (T p) from M ;

3 foreach nj in grid graph do

4 retrieve pc→j and ps→j from MT ;
5 compute P (T p|d ∈ nj), and hence P (d ∈ nj |T p) ;
6 store P (d ∈ nj |T p) in list ;

7 sort list;

return: top-k elements in list

probability P (T p|d ∈ nj) of moving via T p given nj being

the destination; (iii) For each node nj , we compute the

destination probability P (d ∈ nj |T
p) based on P (d ∈ nj)

and P (T p|d ∈ nj); (iv) Finally, we sort the nodes according

to their destination probabilities and return the top-k elements

in the sorted list (i.e., a list of predicted destinations in

descending order of their destination probabilities). It is clearly

observed that the algorithm is extremely straightforward be-

cause of the offline training stage SubSyn-Training presented

in Section III-B. In SubSyn-Prediction, few computations are

carried out since most of the probabilities required can be

directly fetched from pre-computed matrices M and MT .

IV. PRIVACY PROTECTION AGAINST PREDICTION BASED

ON SUBSYN ALGORITHM

As explained in Section I, LBS benefits both users and

business providers. For instance, when a user uses her smart

phone to “check in” at various places and share with her

friends on social websites, she benefits from receiving spe-

cial offers and discounts (e.g., voucher at a coffee shop),

discovering new places (e.g., a restaurant recommended by a

friend), and sharing cheerful moments (e.g., published location

at the venue of an Olympic Games opening ceremony). As a

business provider, the owner is able to create brand loyalty,

have a social medium to engage with customers, and receive

advertisement. Despite the aforementioned benefits that LBS

brings, it also incurs possible locational privacy leak. Privacy

is of high concern to a lot of people, and in many occasions

privacy leak can cause serious safety threats. It is therefore

vital that we develop a solution to counteract the potential

privacy leak threat from abuse of SubSyn by malicious parties.

In order to achieve this goal, we propose a privacy protection

solution in this section to make the destination probability (or

the destination rank) of a private location lower than a chosen

threshold k through deleting the smallest number of nodes

from the query trajectory (constructed from a list of user’s

locations).

Consider the following scenario in which a user takes

advantage of our privacy protection solution to avoid privacy

leak. Jane has a geo-social application on her smart phone,

and during a Sunday afternoon she is on her way home from a

public event. Right before arriving at her house, four locations

(e.g., {l1, l4, l5, l6} in Fig. 2) are recorded from auto check-

ins when uploading a photo taken by her smart phone and

when posting a message, and manual check-ins at the event

venue and in a restaurant. If our privacy protection solution

is in place, before publishing each location, Jane receives a

confirmation dialogue showing a list of predicted destinations

(in decreasing order of destination probability) should the

locations be published. After taking a photo (auto check-in)

at l6 and using the list of locations as the query trajectory

T
p
1,4,5,6, the confirmation dialogue reports a list of predicted

nodes {n9, n3, n8} (cf. Fig.2) amongst which her actual

residential place lies in the grid node n9. Due to the concern

of privacy leak of her residential place, she selects a rank

threshold 3 which indicates that, after applying our solution,

Jane would like the probability of n9 fall below the third

predicated destination. Our solution processes this privacy

protection request and returns a new list of locations {l4, l5}
with predicted destinations {n6, n2, n8} which are the results

of deleting the smallest number of locations (in this case l1
and l6 have been deleted) such that n9 is not amongst the top-3
predicted destinations. Jane is satisfied with the resulting list

of locations, and publishes them without worrying the issue

of privacy leak. One could argue that the first location l1 was

deleted after being published in the first place. This generally

does not pose a serious concern to a user because this location

is deleted within a few hours, and hence it is only a threat
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provided that a malicious party is constantly monitoring her

activities on social websites. Furthermore, if a user requires a

higher protection level, she should be able to select an option

to save the list of check-in locations along a trip, and only

publishes them after arriving at her destination. Based on the

solution presented in this scenario, we give a formal definition

of the privacy protection problem in our paper:

Definition 2: Privacy Protection Against Prediction

based on SubSyn Algorithm This task identifies a set of

locations in the query trajectory to be removed from publica-

tion such that the destination of the query trajectory will be

predicted with a probability lower than a given threshold and

the number of locations not published is minimised.

The remainder of this section presents our proposed solu-

tion. In order to respond to a large number of online queries

submitted by users, the solution should be able to process these

queries in a highly efficient way. We propose two methods to

achieve this goal. Firstly we present an Exhaustive Generation

Method (Section IV-A) which is intuitive, but suffers from

low efficiency issue. We then present another method named

End-Points Generation Method (Section IV-B) which is more

efficient.

A. Exhaustive Generation Method

We first present the intuitive Exhaustive Generation Method.

An example is used here to explain this method: Given a

partial trajectory consisting of r = 4 nodes T
p
1,4,5,6, we first

iteratively delete one node from this given partial trajectory.

Four resulting sub-trajectories, each consisting of three nodes,

will form (i.e., T
p
1,4,5, T

p
1,4,6, T

p
1,5,6, and T

p
4,5,6). We find

the destination probability (and the destination rank) of the

given private destination in each formed sub-trajectory using

SubSyn-Prediction (linear interpolation is used to handle non-

adjacent nodes). If any result satisfies the privacy threshold, we

return the corresponding sub-trajectory to the user. Otherwise

we continue generating a total of six new sub-trajectories of

length 2 (i.e., T
p
1,4, T

p
1,5, T

p
1,6, T

p
4,5, T

p
4,6, and T

p
5,6). This

process is repeated until either we find a suitable sub-trajectory

which satisfies the privacy protection criterion (i.e., below a

rank threshold), or when there is no valid node to be deleted.

However, we note that the Exhaustive Generation Method

is so inefficient that it is impossible to adopt to answer an

online query which is expected to run in a fraction of a

second. The reason is as follows. The original partial trajectory

needs to be decomposed into a list of sub-trajectories up to

a certain extent (e.g., restrictions can be imposed such as

setting the maximum number of deleted nodes to be three,

and the number of sub-trajectories is
∑r

i=r−3 C
r
i ). Based on

the theories of mathematical combination, the complexity of

this process is factorial. It is precisely the reason that the

Exhaustive Generation Method is inefficient. Its running time

is measured and presented in the experiment (Section V).

Hence a revised method (presented below in Section IV-B)

is introduced which does not suffer from this issue and is

efficient in terms of running time as the experiment will show.

B. End-Points Generation Method

We start by presenting the theoretical findings underneath

the End-Points Generation Method which extensively reduces

the number of sub-trajectories that we need to examine, hence

significantly reduces the running time of processing online

queries.

Theorem 1: Using a first order Markov model based Sub-

Syn algorithm and given a partial trajectory, the probability

of any potential destination depends only on the starting node

ns and the current (i.e., most recent) node nc of this partial

trajectory.

Proof: Given a partial trajectory T p, we combine the des-

tination probability equation (1) and the posterior probability

equation (9) to obtain the following equation:

P (d ∈ nj |T
p) =

P (T p) ·
pc→j

ps→j
· P (d ∈ nj)

g2
∑

k=1

[

P (T p) · pc→k

ps→k
· P (d ∈ nk)

]

=

pc→j

ps→j
· P (d ∈ nj)

g2
∑

k=1

[

pc→k

ps→k
· P (d ∈ nk)

]

. (10)

Equation 10 shows that, besides nj , the values of pc→j and

pc→k only depend on the current node nc while the values of

ps→j and ps→k only depend on the starting node ns. Therefore

the value of P (d ∈ nj |T
p) only depends on the starting node

and the current node of the given partial trajectory. �

The above theorem indicates that, given a first order Markov

model and a partial trajectory, the destination probability and

the destination rank of the user’s private destination can be

altered by only deleting the two end points (i.e., ns and nc)

from this partial trajectory. Hence we call this method the

End-Points Generation Method. This way we decrease the

computational cost significantly.

V. EXPERIMENTAL STUDY

In this section, we conduct an extensive experimental study

to evaluate the performance of our SubSyn algorithm. The

only available algorithm that can perform generic destination

prediction is the ZMDB algorithm described in Section II,

and we need to adapt it in the following way in order to

make the comparison. The original ZMDB algorithm can only

give suggestions (i.e., predicted destinations) provided that a

query trajectory has a partial match in the training dataset.

Consequently it can not be compared with our algorithm when

non-matching query trajectories4 are present. An adapted ver-

sion of ZMDB algorithm has been implemented such that the

current node nc in the query trajectory is used as a predicted

destination in the case where insufficient predicted destinations

are generated by ZMDB algorithm. Same implementation is

done for SubSyn. In this section, we call this adapted ZMDB

algorithm the baseline algorithm.

4non-matching query trajectories are those query trajectories which have
no partial match in the training dataset.
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The effectiveness subsection (Section V-B) will focus on

the prediction accuracy while the efficiency subsection (Sec-

tion V-C) measures and presents the running time of both

training and prediction stages. The runtime efficiency of the

locational privacy protection methods proposed are also tested

and compared with each other. The settings of our experimen-

tal study are presented in Section V-A.

A. Dataset

We use a real-world large scale taxi trajectory dataset from

the T-drive project [28, 29] in our experiments. It contains

a total of 580,000 taxi trajectories in the city of Beijing,

5 million kilometres of distance travelled, and 20 million

GPS data points. The GPS points are plotted in Fig. 3. We

randomly pick 1,000 trajectories from this dataset to be the

query trajectories and the remaining trajectories are used as

training data.

B. Evaluation of Effectiveness

Evaluation Measures: To evaluate the performance of our

system on various user queries, we use the following two

means of measurement: Coverage and Prediction Error. The

former counts the number of query trajectories for which at

least k suggested destinations are provided. The parameter k

is determined by the number of predicted destinations that

we set. For instance, when we examine top three predicted

destinations, k is set to three. In other words, due to the

problem of data sparsity presented, it is highly likely that

insufficient predicted destinations will be suggested for certain

non-matching query trajectories. Hence we utilise this property

to demonstrate the difference in robustness between the base-

line algorithm and SubSyn. The prediction error for a single

predicted destination of a query trajectory is the ℓ1 distance

between this predicted destination and the true destination

of the query trajectory. The aggregated Prediction Error is

the average of all distance deviations across each predicted

destinations of all query trajectories. It is used to indicate how

far the prediction results deviate from the true destinations. It

should be made clear that the prediction error does not indicate

the best prediction accuracy that an algorithm can achieve.

For instance, a prediction error of 2km for the top three

predicted destinations is the averaged distance deviation of all

of these three predicted destinations, and it is likely that the

true destination is amongst these three predicted destinations.

Better algorithm has a higher coverage and a lower prediction

error (i.e., lower average distance deviation).

The two aforementioned means of measurement will be

evaluated against varying four parameters one at a time:

Firstly we will vary the grid granularity g (20-50 with 10

units increment) to select a best grid granularity for our

training dataset. This chosen grid granularity will be used

for the remainder of the experiment. The second and third

parameters are the trip completed percentage (10%-90% with

20% increment) and the top-k predicted destinations (1-5 with

1 unit increment). Finally, instead of randomly selecting query

trajectories from the training dataset, we manually mix the

proportion of matching and non-matching query trajectories

and vary the Match Ratio (denoted by τ ) which is the

proportion of matching query trajectories in the test dataset

(0-1 with 0.25 increment).

Fig. 3. Training dataset: 20 million
taxi GPS points in Beijing

Fig. 4. Map of Beijing with a 30×
30 grid graph overlay

In the following experimental result figures, a convention is

set that dashed lines and hollow shapes are used to represent

the baseline algorithm, and solid lines and filled shapes are

for our SubSyn algorithm.

Varying the grid granularity: First of all, a suitable grid

granularity needs to be decided for our training dataset. On

one hand, a coarse grid (e.g., 20× 20) may have a very low

prediction accuracy because the area covered by each grid

node is too large. On the other hand, it has the benefit that the

number of matching query trajectories is much higher since

more trajectories in the training dataset may fall into identical

nodes, hence increasing prediction accuracy. A fine grid (e.g.,

50× 50) has the advantage of higher prediction accuracy that

the small node area brings, but training data become even

sparser because less locations will lie in a same node, making

the task of destination prediction more difficult. Fine grid also

has a drawback that it requires (much) more time to complete

the offline training stage. Therefore, we need to find a balanced

and compromised grid granularity that is neither too small nor

too large, and can achieve the best prediction accuracy.
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Fig. 5. Varying the grid granularity g

Fig. 5 shows the trends in both coverage and prediction

error with respect to grid granularity. The coverage of the

baseline algorithm drops rapidly due to the data sparsity

problem caused by smaller nodes in a fine grid, but the drop

in coverage of SubSyn-Prediction is extremely small. The

optimal grid granularity for our training dataset is selected to

be 30 according to the global minimum point in Fig. 5b. In a

typical setting where g = 30 and trip completed percentage is
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70%, the coverage of SubSyn-Prediction algorithm is roughly

three times the coverage of the baseline algorithm while having

a more than 1km reduction in prediction error. Although the

optimal value of g is dependent on different training dataset,

it does not need to be modified often because the update in

training dataset is rare (e.g., one update every few months),

and for a satisfactory prediction accuracy, it is not essential

to modify g for each training dataset update. All following

experiments are done using the grid granularity g = 30 (cf.

Fig. 4).

Varying the percentage of trip completed: Fig. 6 shows

the effectiveness performance versus the percentage of trip

completed for both top-k values 1 and 3. For the baseline

algorithm, the amount of query trajectories for which sufficient

predicted destinations are provided decreases as the length of

the trip increases due to the fact that longer query trajectories

(i.e., higher trip completed percentage) are less likely to have

a partial match in the training dataset. Specifically, when trip

completed percentage increases towards 90%, the coverage of

the baseline algorithm decreases to almost 0%. Our SubSyn-

Prediction algorithm successfully coped with it as expected

with only an unnoticeable drop in coverage, and can constantly

answer almost 100% of query trajectories. It proves that the

baseline algorithm cannot handle (relatively) long trajectories

since the chances of finding a matching trajectory decrease

when the length of a query trajectory grows. The coverage

performance of the baseline algorithm when top-k = 3 is even

worse then that of top-k = 1 because the metric coverage

counts the number of query trajectories that gives k predicted

destinations. Therefore the number of query trajectories for

which SubSyn-Prediction gives three suggestions is clearly

less than those which can provide only one suggested des-

tination.
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Fig. 6. Varying the percentage of trip completed

Apart from the huge advantage of SubSyn-Prediction in

coverage, its prediction error is comparable with that of the

baseline algorithm. For the baseline algorithm, despite the

negative influence of the coverage problem, its prediction

error reduces as the trip completed percentage increases for

a simple reason. When the baseline algorithm fails to find

adequate predicted destinations, we use the current node in the

query trajectory as the predicted destination. Because higher

trip completed percentage yields a closer distance between

the current node and the true destination, the prediction error

reduces accordingly. For SubSyn-Prediction, closer to the true

destination means that there are fewer potential destinations

and intuitively the prediction error reduces. It is observed

that SubSyn-Prediction outperforms the baseline algorithm

throughout the progress of a trip.

Varying the number of predicted destinations: We also

investigate the effect of the number of predicted destinations

on the performance of both algorithms by examining the top-

k (from 1 to 5) predicted destinations. We are interested in

this metric since it reveals more vulnerability of the baseline

algorithm in that although it can make prediction for matching

trajectories, the number of predicted destinations may still

be insufficient (e.g., only one). Therefore in such circum-

stances where insufficient predicted destinations are returned,

we consider them unsatisfactory in the coverage test. The
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Fig. 7. Varying the value of k

experimental results are shown in Fig.7. In this figure, the com-

parative performances of both algorithms are similar to that of

the experiment of varying the percentage of trip completed.

Specifically, observations which can be made from the figure

are as follows. The SubSyn-Prediction algorithm shows a more

stable coverage and a more accurate prediction accuracy than

the baseline algorithm. For the baseline algorithm, the number

of query trajectories which have sufficient suggestions (i.e.,

the coverage) drops due to the data sparsity problem since,

for certain query trajectories, it cannot find adequate (i.e.,

no less than k) predicted destinations. The same problem

does not affect SubSyn-Prediction and it remains an almost

100% suggestion offer rate. In a typical setting when k = 3,
the coverage of SubSyn-Prediction is almost three times the

coverage of the baseline algorithm.

Varying top-k has little correlation with the prediction error

because we compute the prediction error (i.e., average distance

deviation) by averaging amongst all predicted destinations.

Varying the ratio of matching and non-matching query

trajectories: The query trajectories used in the above exper-

iments are drawn randomly from the training dataset. They

reflect the real distribution of matching and non-matching

query trajectories in both the test dataset and the training

dataset. It is found that the real match ratio (denoted by

τ ) decreases while the grid granularity g increases because

finer grid yields sparser data. For a 30 × 30 grid graph, the

averaged real match ratio is found to be approximately 0.27

(indicated by the vertical dashed line in Fig. 8). It indicates

that, in average, only 27% of query trajectories will be able

to find a partial match in the training dataset. A low match

ratio hence is fatal to the original ZMDB (and the baseline)

algorithm, but has little negative impact on SubSyn-Prediction.
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In this experiment, we elaborate further on the concept of

match ratio by manually selecting a mixture of matching and

non-matching query trajectories, and comparing the influence

of different match ratios. For simplicity while maintaining an

indicative results, a trajectory is said to have a partial match if

the first 70% nodes have an exact match in the training dataset.

This indicates that, when τ = 0.27 and the trip completed

percent is higher than 70%, the coverage is at most 27% for

the baseline algorithm.
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Fig. 8. Varying the match ratio τ

As shown in Fig. 8, by varying the match ratio τ , the perfor-

mance of the baseline algorithm deteriorates rapidly when τ is

tuned towards zero while little impact is observed for SubSyn-

Prediction. The baseline algorithm functions well provided that

abundant data are given (i.e., τ → 1), but the performance

starts to decrease to an unacceptable status when there are

insufficient training data. Particularly, when the match ratio is

low (i.e., τ → 0) and the trip completed percentage is high

(e.g., 70%), the baseline algorithm has a coverage towards

0%. From Fig. 8a, our SubSyn-Prediction algorithm provides

adequate (i.e., at least three since the default value of top-k

is 3) predicted destinations for almost every query trajectory.

It proves that our algorithm can overcome the data sparsity

problem while maintaining a stable performance, whereas the

baseline algorithm is unable to achieve this objective.

In Fig. 8b, it is observed that the prediction errors of both

algorithms drop when more relevant training data are available

(i.e., τ → 1). Once again, it proves that the prediction accuracy
of SubSyn-Prediction leads the baseline algorithm.

C. Evaluation of Efficiency

Apart from the prediction accuracy, runtime efficiency is as

important since the algorithms need to be evoked to answer

real-time queries. For each user supplied query, it must report

a list of predicted destinations instantaneously. Otherwise the

whole purpose of the solution is meaningless. This section

verifies the swiftness of SubSyn-Prediction which outperforms

the baseline algorithm by at least two orders of magnitude in

most cases. Result is presented with respect to varying both

trip completed percentage and match ratio. The reason for not

including the parameter top-k is that all potential nodes are

computed for a destination probability before selecting the

first k destinations to report. Therefore the value of k does

not affect the computation process at all. The running time of

SubSyn-Training is also presented for completeness. In the

context of privacy protection, the two methods Exhaustive

TABLE II
AVERAGE RUNNING TIME OF SUBSYN-TRAINING ALGORITHM

Grid Granularity 20 30 40 50

Running Time (h:mm:ss) 0:02:35 0:32:35 3:08:53 17:13:55

Generation Method and End-Points Generation Method are

compared for running time with respect to the number of nodes

in query trajectories, which is directly related to the number

of to-be-published locations. It is worth mentioning that this

part of the experiment was run on a commodity computer with

Intel i7-860 CPU (2.8GHz) and 4GB RAM.

Runtime efficiency of SubSyn-Training algorithm: In

Algorithm 1, we introduced the SubSyn-Training algorithm

which synthesises sub-trajectories in the training dataset and

generates matrices M and MT to be used in the online query

stage. Especially, several enhancements were implemented to

increase the runtime efficiency of the time-consuming large

matrix multiplications. Our experiments have proven that the

running time of SubSyn-Training is totally acceptable. Table II

summarises the time taken in the training stage with respect to

various grid granularities. In a 30×30 grid graph, the average

running time of SubSyn-Training is approximately 30 minutes

which is negligible, especially when the training stage is only

run occasionally (e.g., once in a few months). Even when

the grid granularity reaches 50, the training stage can still

be completed within 18 hours on a commodity computer with

ordinary hardware configuration.

Runtime efficiency of SubSyn-Prediction algorithm: We

compare the runtime performance of our SubSyn-Prediction

algorithm with the baseline algorithm in terms of online query

response time. Due to the information stored in the train-

ing stage, SubSyn-Prediction requires little extra computation

when answering a user’s query. As Fig. 9 shows, the baseline

algorithm requires too much time to run, whereas SubSyn-

Prediction algorithm is at least two orders of magnitude better

constantly. The reason is that the baseline algorithm is forced

to make a full sequential scan of the entire training dataset in

order to compute the posterior probability, whereas SubSyn-

Prediction can fetch most probability values directly from

the stored matrices M and MT . It is worth mentioning that

varying either parameter (i.e., trip completed percentage or

match ratio) has little influence on the running time of the two

algorithms. These parameters mainly affect the effectiveness

of the prediction process rather than the runtime efficiency.

Runtime efficiency of privacy protection methods: We

introduced two methods for privacy protection in Section IV,

namely the Exhaustive Generation Method and the End-Points

Generation Method. Experiment was conducted to compare the

runtime efficiency of both methods by varying the number of

nodes in query trajectories.

The result presented in Fig. 10 clearly shows the gap in

running time even when illustrated in a log-scale plot. The

simple reason is that the Exhaustive Generation Method suffers

from generating excessive number of sub-trajectories, espe-

cially when the number of locations, and hence the number

of nodes, in a query trajectory is large since more nodes in a
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query trajectory generates exponentially more sub-trajectories.

While the number of nodes in query trajectories increases, the

rise in running time of the End-Points Generation Method is

infinitesimally small. It is demonstrated from this performance

study that, similar to the runtime efficiency of the two desti-

nation prediction algorithms, the running time of End-Points

Generation Method is at least two orders of magnitude faster

than that of the Exhaustive Generation Method.

VI. CONCLUSION

In this paper, we have identified the data sparsity problem

in destination prediction and proposed a novel Sub-Trajectory

Synthesis (SubSyn) algorithm to address this problem. Sub-

Syn algorithm decomposes historical trajectories into sub-

trajectories and connect them into “synthesised” trajectories

for destination prediction. This process is formulated based on

a Markov model. The number of query trajectories that can

have predicted destinations is exponentially increased by this

means. Experiments based on real datasets have shown that

SubSyn algorithm can predict destinations for up to ten times

more query trajectories than the baseline algorithm. SubSyn

algorithm consistently predicts destinations for all the query

trajectories in all the experiments we have performed, and it

have successfully addressed the data sparsity problem. At the

same time, the SubSyn prediction algorithm runs over two

orders of magnitude faster than the baseline algorithm.

We have also taken into account the privacy protection issue

in case an adversary uses SubSyn algorithm to derive sensitive

location information of users. We proposed an efficient algo-

rithm for selecting the smallest number of locations a user

has to hide on her trajectory in order to avoid privacy leak.

Compared with a naive algorithm, our proposed algorithm is

more than two orders of magnitude faster.
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