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ABSTRACT
With the rapid growth of social tagging systems, many ef-
forts have been put on tag-aware personalized recommen-
dation. However, due to uncontrolled vocabularies, social
tags are usually redundant, sparse, and ambiguous. In this
paper, we propose a deep neural network approach to solve
this problem by mapping both the tag-based user and item
profiles to an abstract deep feature space, where the deep-
semantic similarities between users and their target items
(resp., irrelevant items) are maximized (resp., minimized).
Due to huge numbers of online items, the training of this
model is usually computationally expensive in the real-world
context. Therefore, we introduce negative sampling, which
significantly increases the model’s training efficiency (109.6
times quicker) and ensures the scalability in practice. Exper-
imental results show that our model can significantly outper-
form the state-of-the-art baselines in tag-aware personalized
recommendation: e.g., its mean reciprocal rank is between
5.7 and 16.5 times better than the baselines.
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1. INTRODUCTION
In the era of Web 2.0, social tagging systems are intro-

duced by many websites, where users can freely annotate
online items using arbitrary tags (commonly known as folk-
sonomy [5]). Since social tags are good summaries of the
relevant items and the users’ preferences, and also contain
little sensitive information about their creators, they are
valuable information for privacy-enhanced personalized rec-
ommendation. Consequently, many efforts have been put
on tag-aware personalized recommendation using content-
based filtering [2, 8] or collaborative filtering [1, 9]. How-
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ever, as users can freely choose their own vocabulary, social
tags may contain many uncontrolled vocabularies, such as
homonyms, synonyms, words in arbitrary languages, or even
user-created words. This results in very sparse, redundant,
and ambiguous tag information, which greatly degrades the
performance of the tag-aware recommendation systems.

A solution to this problem is to apply clustering in the tag
space [8]; however, clustering requests to compute the simi-
larity between tags which is usually very time-consuming (or
even intractable). Another solution is to use autoencoders;
in [10], abstract representations for tag-based user profiles
are first modeled by autoencoders and then used as inputs
of user-based collaborative filtering to generate recommen-
dation. Although this method is reported to achieve better
performance than the clustering-based collaborative filter-
ing method [10], it still suffers from two drawbacks: (i) the
model’s learning signal comes from the reconstruction error,
which is not the objective of personalized recommendation,
i.e., distinguishing the user’s target items from the irrelevant
ones; (ii) the recommendation is solely based on user pro-
files, so the relevance between users and items is indirectly
inferred from other similar users. So its performance in per-
sonalized recommendation is damaged to a great extent.

In this paper, motivated by the above observations, we
propose to address the uncontrolled vocabulary problem by
using deep neural networks to map both the tag-based user
and item profiles to an abstract deep feature space, where
the similarities between users and their target items (resp.,
irrelevant items) are maximized (resp., minimized). We call
the similarities on the deep feature space deep-semantic sim-
ilarities and this model deep-semantic similarity based per-
sonalized recommendation (DSPR) model. DSPR has the
following advantages: (i) The training objective is directly
correlated with differentiating the user’s target items from
the irrelevant ones, so the resulting abstract features for user
and item profiles are very effective representations for per-
sonalized recommendation. (ii) The relevance between users
and items is directly computed using the similarities between
the abstract user and item profiles.

However, to train DSPR, the deep-semantic similarities
between the user in each training sample and all the candi-
date items have to be computed in each training run. As the
number of candidate items for a recommendation system is
usually very large (millions), and training deep neural net-
works often requires numerous training samples and many



training runs, training the DSPR model is computationally
expensive in practice, which results in scalability problem.
To address this problem, we propose to use negative sam-
pling [7], to significantly enhance DSPR’s training efficiency,
while maintaining almost the same training effectiveness.

The contributions of this paper are threefold: (i) We pro-
pose a tag-aware personalized recommendation system that
uses deep-semantic similarity-based neural networks to ex-
tract abstract and recommendation-oriented representations
for tag-based user and item profiles so as to achieve a su-
perior personalized recommendation. (ii) For scalability in
practice, we use negative sampling to increase the model’s
training efficiency (109.6 times quicker). (iii) We provide
experimental results, which show that our model can signifi-
cantly outperform the state-of-the-art baselines in tag-aware
personalized recommendation: e.g., its mean reciprocal rank
is between 5.7 and 16.5 times better than the baselines.

2. RELATED WORK
Many systems have been proposed for tag-aware person-

alized recommendation on the Social Web. Content-based
systems [2, 8] aim at recommending items that are similar
to those that a user liked previously. Collaborative systems
recommend to users items liked by similar users using ma-
chine learning techniques, such as nearest neighbor model-
ing [9] and matrix factorization [1]. Due to uncontrolled
vocabularies, social tags are usually redundant, sparse, and
ambiguous. A solution is to apply clustering in the tag space
to aggregate redundant tags and reduce ambiguities [8]. But
tag clustering is usually time-consuming in practise, so an-
other solution is to use autoencoders [10].

Deep learning has been successfully applied in many search
and recommendation applications, such as item recommen-
dation [4] and Web search [6]. Similarly to our work, [4]
and [6] use deep-semantic similarity models with a ranking-
oriented training objective. However, these models are very
different from DSPR: (i) they are not tag-aware systems
and not designed to solve the redundancy, sparsity, and am-
biguity problems in tag space; (ii) instead of using negative
sampling, these two works intentionally assume the number
of candidate items to be very small (5 in [6] and 10 in [4]) to
make the model trainable. Obviously, this assumption is un-
reasonable in real-world situations. Negative sampling was
first introduced in the NLP community to learn word rep-
resentation more efficiently [7]. To our knowledge, our work
is the first that applies negative sampling to enhance the
training efficiency of deep-semantic similarity-based models.

3. PRELIMINARIES
A folksonomy is a tuple F = (U, T, I, A), where U , T ,

and I are sets of users, tags, and items, respectively, and
A ⊆ U × T × I is a set of assignments (u, t, i) of a tag t to
an item i by a user u [5].

A user profile is a feature vector xu = (gu1 , . . . , g
u
M ), where

M = |T | is the tag vocabulary’s size, and guj = |{(u, tj , i) ∈
A | i∈ I}| is the number of times that user u annotates
items with tag tj . Similarly, an item profile is a vector
xi = (gi1, . . . , g

i
M ), where gij = |{(u, tj , i)∈A | u∈U}| is

the number of times that item i is annotated with tag tj [2].
Personalized recommendation is then defined as follows.

For a user u, the system produces a ranked recommenda-
tion list τ = [i1 ≥ i2 ≥ · · · ≥ in] for all items s.t. ia≥ ib iff
Recom(u, ia)≥Recom(u, ib), where Recom(u, i) is a recom-
mendation function measuring how relevant item i is to u.
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Figure 1: Overview of DSPR

4. DSPR WITH NEGATIVE SAMPLING
Figure 1 shows an overview of our deep-semantic similari-

ty-based personalized recommendation (DSPR) model. Gen-
erally, DSPR takes the tag-based user and item profiles xu
and xi (as defined in Section 3) as inputs of two deep neu-
ral networks with shared parameters. These inputs are then
passed through multiple hidden layers and projected into an
abstract deep feature space on the final hidden layer, where
the similarities between the abstract representations of user
and item profiles are computed. Finally, a recommendation
function is used to rank items by applying the softmax func-
tion on the resulting similarities.

The motivation of sharing parameters is as follows: (i)
Since both user and item profiles are modeled from the same
folksonomy, they share the same tag space and same value
range in each dimension; so it is reasonable to use shared
parameters to reduce computational and memory costs in
model training. (ii) Shared parameters make two neural net-
works use the same abstract feature space to describe users
and items, which is beneficial for measuring their relevancy.

Formally, given the user profile xu, the item profile xi, a
weight matrix W1, and a bias vector b1, the intermediate
output h1 of the first hidden layer is defined as follows:

h1(u) = tanh(W1xu + b1), (1)

h1(i) = tanh(W1xi + b1), (2)

where tanh is used as the activation function. Similarly,
the intermediate output of the jth hidden layer hj , j ∈
{2, . . . ,K}, is defined as:

hj(u) = tanh(Wjhj−1(u) + bj), (3)

hj(i) = tanh(Wjhj−1(i) + bj), (4)

where Wj and bj are the weight matrix and the bias vector
for the jth hidden layer, and K is the total number of hidden
layers. The outputs of Kth hidden layer are the abstract
feature representations of user and item profiles, denoted x̃u
and x̃i, respectively. Formally,

x̃u = hK(u), x̃i = hK(i). (5)

Then, the similarity between a user u and an item i is
measured using the cosine similarity between the abstract
representations of their profiles, formally defined as

Sim(u, i) =
x̃u · x̃i

‖x̃u‖‖x̃i‖
, (6)

and called deep-semantic similarity.



Finally, to generate personalized recommendations, a rec-
ommendation function is used to measure the relevance of
an item i to a user u by applying the softmax function on
the resulting deep-semantic similarities; formally,

Recom(u, i) =
eSim(u,i)∑

i′∈I e
Sim(u,i′)

. (7)

As we assume that the target items of a given user are
those annotated by this user, to achieve good personalized
recommendations, these items should have higher recom-
mendation scores than others. We thus conduct the model
training with an objective to maximize the recommenda-
tion scores of target items; equivalently, it is to maximize
the deep-semantic similarities between users and their tar-
get items and minimize those with irrelevant ones. Formally,
it is equivalent to minimizing the following loss function:

L(Θ) = −
∑

(u,i∗)

log(Recom(u, i∗))

= −
∑

(u,i∗)

[log(eSim(u,i∗))− log(
∑
i′∈I

eSim(u,i′))], (8)

where Θ represents the parameters Wj and bj in the neural
network; (u, i∗) are training samples, which are pairs of a
user u and his/her target item i∗, generated from assign-
ments (u, t, i∗) in a training dataset.

In training, we first initialize the weight matrices Wj , us-
ing the random normal distribution, and initialize the biases
bj to be zero vectors; the model is then trained by back-
propagation using mini-batch gradient descent; finally, the
training stops when the model converges or reaches the max-
imum training runs. As for regularization, validation-based
early stopping is used to avoid overfitting.

4.1 Negative Sampling
Although the loss function in Equation (8) is computable,

it is computationally very expensive. This is because, for
each training sample (u, i∗) in each training run, the sec-
ond term requests to compute and sum the deep-semantic
similarities between u and all candidate items in I. In the
real-world context, the number of candidate items for an on-
line recommendation system is usually very large (millions),
and training a deep neural network often requires numerous
training samples (millions) and many (thousands) training
runs; the training of the DSPR model is thus very time-
consuming in practice. However, this term is important:
with its help, minimizing the loss function not only maxi-
mizes the deep-semantic similarities between the given user
and his/her target items, but also minimizes those with irrel-
evant items. Consequently, it helps to distinguish the target
item from the irrelevant ones.

To tackle this dilemma, we use negative sampling [7] to
greatly reduce the time needed to process each training sam-
ple, and to ensure the scalability of DSPR. In negative sam-
pling, instead of using all irrelevant items, for each train-
ing sample, we randomly sample only a small portion of
irrelevant items from the set of candidate items as negative
examples to approximate the noise and to differentiate tar-
get items from irrelevant ones. Consequently, the negative-
sampling-based loss function is formally defined as follows:

LNS(Θ) = −
∑

(u,i∗)

[log(eSim(u,i∗))− log(
∑

(u,i−)∈D−
eSim(u,i−))],

where (u, i−) are negative samples, which are contained in a
negative dataset D− and generated by randomly sampling
S negative examples i− for each training sample (u, i∗).

Table 1: Dataset Information

Users (u) Tags (t) Items (i) Assignments ((u, t, i∗))

1 843 3 508 65 877 339 744

5. EXPERIMENTS
To show the strength of the DSPR with negative sampling

(DSPR-NS) model in solving the uncontrolled vocabulary
problem and offering superior personalized recommendation
performance, we use three models based on state-of-the-art
solutions, clustering [8] and autoencoders [10], as the base-
lines: (i) Clustering-based cosine similarity (CCS): hierar-
chical clustering [8] is used to model the users and items
as cluster-based feature vectors, upon which content-based
filtering using cosine similarity is applied for recommenda-
tions. (ii) Clustering-based collaborative filtering (CCF):
CCF is similar to CCS but applies user-based collaborative
filtering for recommendations. (iii) Autoencoder-based col-
laborative filtering (ACF) [10]: an autoencoder is used to
obtain abstract representations of user profiles, upon which
collaborative filtering is applied for recommendations.

The experiments are performed on the same public real-
world dataset as used in [10], which is gathered from the De-
licious bookmarking system and released in HetRec 2011 [3].
After using the same pre-processing to remove the infrequent
tags that are used less than 15 times, the resulting dataset is
as shown in Table 1. As we assume that the target items of a
given user are the ones annotated by this user, we randomly
select 80% of the assignment data as training set, 5% as val-
idation set, and 15% as test set. The assignments (u, t, i∗) in
the training set are used to construct user and item profiles
and to extract the user-item pairs (u, i∗) as training sam-
ples. We also extract user-item pairs from the assignments
in the validation set as validation samples, which are used to
avoid over-fitting by early stopping. Finally, user-item pairs
extracted from the assignments in the test set are used as
test samples to evaluate the recommendation performance.
Specifically, for each test sample (u, i∗), we first pass the
profiles of u and all candidate items in I through the well-
trained neural networks; then the relevance between u and
all candidate items are computed based on Equation (7);
finally, a recommendation list is generated where all candi-
date items are ranked according to their relevancy to u.

All models are implemented using Python and Theano
and run on a GPU server with an NVIDIA Tesla K20 GPU
and 8GB GPU memory. The parameters of DSPR-NS are
set as follows: (i) # of hidden layers (i.e., K): 3; (ii) # of
neurons in the first, second, and third hidden layers: 3 000,
300, and 128, respectively; (iii) training batch size: 128;
(iv) # of negative examples for each training sample (i.e.,
S): 127; (v) # of maximum training runs: 10 000; and (vi)
learning rate for model training: 0.001.

Since users usually only browse the topmost recommended
items, we apply the precision at k (P@k), recall at k (R@k),
and F1-score at k (F@k) as evaluation metrics. To take
into account the order of items, we also employ the mean
average precision (MAP) and mean reciprocal rank (MRR)
as metrics to give greater importance to items ranked higher.

5.1 Main Results
Table 2 shows in detail the personalized recommendation

performance of DSPR-NS and the three baselines in terms
of P@k, R@k, F@k, MAP, and MRR, where four cut-off
ranks k = 1, 5, 10, and 20 are selected.



Table 2: Recommendation Performance of Different Models (in %)

Models P@1 P@5 P@10 P@20 R@1 R@5 R@10 R@20 F@1 F@5 F@10 F@20 MAP MRR

CCF 1.194 0.868 0.814 0.667 0.089 0.417 0.765 1.158 0.165 0.564 0.789 0.847 0.416 0.200
ACF 1.465 1.139 0.950 0.798 0.194 0.561 0.891 1.370 0.342 0.752 0.919 1.008 0.606 0.252
CCS 3.527 2.279 1.970 1.712 0.263 0.892 1.637 2.741 0.490 1.282 1.788 2.108 1.254 0.523

DSPR-NS 22.68 17.41 14.86 11.43 1.750 5.772 9.219 13.21 3.250 8.669 11.38 12.26 8.097 3.517

Table 3: Training Efficiency and Effectiveness

DSPR-O DSPR-NS

# of runs 500 500 1 000 10 000
time (hrs) 124.0 1.121 2.243 22.42
MRR-VS 0.02172 0.02157 0.02367 0.03555

The results in Table 2 show that our DSPR-NS model
achieves the best personalized recommendation performance.
It significantly outperforms the three other baselines in all
metrics; e.g., the MRR of DSPR-NS is roughly 5.7, 13, and
16.5 times better than the ones of CCS, ACF, and CCF, re-
spectively; also, the comparison results in P@k, R@k, F@k,
and MAP are similar. The superior performance of DSPR-
NS mainly has the following two reasons: (i) the training ob-
jective of DSPR-NS is directly correlated with distinguishing
the user’s target items from the irrelevant ones; so, the re-
sulting abstract features for user and item profiles are much
more effective representations for personalized recommenda-
tion than those generated by clustering and autoencoders;
(ii) the relevance between users and items in DSPR-NS is
directly computed using the deep-semantic similarities be-
tween user and item profiles; so, it can achieve more accurate
recommendations than CCF and ACF, where the recom-
mendations are only based on user profiles, so the relevance
has to be inferred indirectly from other similar users.

5.2 Efficiency and Scalability
To investigate the training efficiency and scalability of

DSPR, besides DSPR with negative sampling (DSPR-NS),
we construct another model (DSPR-O) which is identical to
DSPR-NS, except using the original loss function in Equa-
tion (8) for model training. The training time is recorded
to compare the training efficiency of two models. But the
standard training loss is not suitable for evaluating training
effectiveness, as DSPR-O and DSPR-NS use different loss
functions. Here, we use MRR on validation samples (MRR-
VS) to measure the training quality, it is because (i) both
training objectives are to get better personalized recommen-
dations, so the higher the MRR-VS the better the model; (ii)
MRR-VS is monitored during the training process to avoid
over-fitting, so using it will not increase the training time.

As shown in Table 3, it costs DSPR-O 124.0 hours to fin-
ish the training of 500 runs, but DSPR-NS only takes 1.121
hours (i.e., 109.6 times quicker); meanwhile, the MRR-VS
of two models are almost the same (0.02172 vs. 0.02157).
This indicates that negative sampling can significantly en-
hance the training efficiency of DSPR, while maintaining
almost the same training effectiveness. In addition, training
500 runs is usually not enough; more runs are required to
train a good recommendation model. As shown in Table 3, it
takes only 22.42 hours for DSPR-NS to finish the training of
10 000 runs and enhance MRR-VS up to 0.03555. However,
without negative sampling, such training will cost DSPR-O
103.3 days, which is very impractical. So negative sampling

greatly increases the scalability of DSPR and makes it pos-
sible to properly train DSPR in real-world situations.

6. SUMMARY AND OUTLOOK
We have proposed a tag-aware personalized recommenda-

tion system using a deep-semantic similarity model, DSPR,
to extract recommendation-oriented representations for so-
cial tags, to address the uncontrolled vocabulary problem
and to achieve superior personalized recommendations. We
have also proposed to use negative sampling to greatly re-
duce the system’s training time and to ensure a good scal-
ability in practice. Experiments show that DSPR signifi-
cantly outperforms the state-of-the-art baselines in person-
alized recommendation in terms of all selected metrics.

In the future, more extensive experiments will be con-
ducted to further evaluate the performance of DSPR on dif-
ferent parameter settings and additional folksonomy datasets,
e.g., Last.fm. Also, we plan to use hybrid learning signals
or more sophisticated neural networks, e.g., convolutional
network or LSTM, to learn more effective abstract tag rep-
resentations for tag-aware personalized recommendations.
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