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Abstract—Although deep learning has achieved great success
in the field of medical image processing, the existing deep learning
based medical image segmentation solutions still cannot obtain
satisfactory performances for abdominal small organs and lesions
due to their small object size and shape-variability. In this work, a
Deeply Supervised Multi-Scale U-Net (DSMS U-Net) is proposed
for more accurate segmentation performances on abdominal
small organs images. DSMS U-Net integrate the existing U-
Net model with a restoration decoder module and some multi-
scale convolution modules. Our experiment results demonstrate
that the proposed DSMS U-Net approach has much better
segmentation performances than the state-of-the-art baselines.

Index Terms—Tumor Segmentation, Multi-Scale, Deep Super-
vision

I. INTRODUCTION

With the considerable growth of computer image processing
technology, computer-assisted medical images diagnosis and
treatment has grown rapidly in the last few decades [1].
Particularly, the success of deep learning technology for image
classification, object detection, and semantic segmentation, has
also attracted increasing attention in medical image analysis.
The semantic segmentation for organ and its tumor medical
image are regarded as an important step in the clinic medical
image analysis process. For example, segmenting a tumor
target from patients images is a critical step for radiotherapy
treatment, measurement of chemotherapy and surgery.

In recent years, we have witnessed significant segmentation
works on medical organs image by CNNs architectures. Ron-
neberger et al. [2] trained the U-shaped network (U-Net) end-
to-end from neural structures in electron microscopic stacks
and achieved well performance for segmentation. Drozdzal
et al. show that a low-capacity fully convolution network
(FCN) [3] can serve as a preprocessor to obtain normal-
ized images, which are then iteratively refined by a Fully
Convolutional Residual Networks (FC-ResNets) to generate
an improving segmentation prediction on CT images of liver
lesions [4]. And Xue et al. [5] proposed a novel adversarial
critic network to force the critic and segmentor to learn
both global and local features. As a result, Segan framework
leads to better performance than U-Net for its effectivity and
stability.

Although U-Net has become the state-of-the-art method on
the medical image segmentation task for its accuracy and effi-
ciency, the original U-Net with the relatively simple encoder-
decoder structure is inappropriate for the segmentation on
abdominal small organs. This is because the small organs and
their tumor in CT image, compared with the common object
in natural image segmentation tasks, are much smaller against
the whole background. And U-Net will fail to capture the
sufficient associated features of global and local details due
to the impacts of spatial resolution. In this work, to achieve
more accurate segmentation in abdominal small organ images,
we propose a novel image segmentation method.

To solve the above problems, we propose DSMS U-Net
that integrates the existing U-Net model with a restoration
decoder module and some multi-scale convolution modules
for more accurate segmentation performances on abdominal
small organ images. The advantages of our proposed method
are shown as follows: (i) Multidimensional features extracting
are supervised by adding a restoration decoder to the bottom
of the model. So that the principal components of the image
are better abstracted from the sparse and specific images, and
more effective features are encoded for segmentation tasks.
(ii) Based on the structure of U-Net, multi-scale convolutional
modules are proposed to increase the receptive density during
feature maps fusion. Then the model more effectively cap-
tures the global information and fine-grained details of the
foreground regions when high-dimension features from the
encoder network are gradually enriched prior to fusion with the
corresponding semantically rich feature maps from the decoder
network. Therefore, the proposed method captures the features
of different scale. Our experiment reveals that the proposed
method yield better performance over the state-of-the-arts.

The contribution of this work is provided as follows: Firstly,
we present several problems of segmentation tasks on abdom-
inal small organ images. Secondly, to meet the challenges of
segmentation, which are the individual specificity and low pro-
portion target region, we propose a novel model with deeply
supervised multi-scale U-net. Thirdly, our method experiment
is conducted on two CT datasets. And we only present the
results achieved on the pancreas dataset due to the limited
page.



II. RELATED WORK

Some researchers point out improved CNNs-based methods,
whose structure has multi-layers on medical segmentation
tasks. FCN and U-Net are both improved versions of CNNs,
which start the research domain named semantic segmentation
end to end. FCN changed its last layer with the convolution
layer. Additionally, up-sampling and skip connection [6] are
applied to segment target by classification at the pixel level.
Apparently, for lack of relationships among global pixels
information, FCN obtains a fuzzy and smooth result, which
is not refined enough. U-Net contains a compressed path to
capture semantic features and an extension path to locate
accurately. This is the trade-off between higher resolution and
more abstract features. Compared with FCN, U-Net presents a
fine segmentation ability via several combinations between low
level-features and deep features. However, there are unsolved
problems around the appropriate depth of U-Net for different
datasets and space for improvement on the features extracting
of local details and global information.

To deal with the problem of model depth for U-Net, Zhou
et al. [7] filled the framework on every layer and cut off
the redundant network on the process of training. Then U-
Net++ has more abundant and stable representation ability
but a large number of parameters. To learn more principal
features and discard useless information or noise, Mao et
al. [8] built a convolutional auto-encoders with symmetric skip
connections. And the architectural decisions [9] were designed
based on the Hebbian principle and the multi-scale processing,
to optimize the quality of features extraction. The classication
and detection tasks were achieved via utilizing the one-side
convolution [10] to adjust the channels of feature maps in the
network. Another pooling mode, like spatial pyramid pooling,
was used to eliminate the impact of interest regions scale and
achieve the deformation robust [11]. He et al. proved that
SPP-net is also significant in classification and detection by
generating a fixed-length representation. And Zhao et al. [12]
exploited the global context information through the pyramid
pooling module together with the proposed pyramid scene
parsing network (PSPNet). After that, based on the PSPNet,
Lin et al. [13] pointed out the Feature Pyramid Network (FPN),
whose top-down architecture with lateral connections was
developed for building high-level semantic feature maps. Then,
Men et al. [14] applied PSPNet into rectal tumors CT images
for segmentation task. They applied the proposed CNN with
atrous convolution and spatial pyramid pooling (SPP) module
to extract high-resolution features, meanwhile maintaining
large receptive fields for tumors of different sizes. In spite
of that, PSPNet extracts the spatial location information with
not sufficient abilities enough, because the pyramid pooling
module focuses more on the existence of image features rather
than location. And we think that the rich location details are
significant for accurate segmentation of the medical image.

III. METHODS

The proposed framework mainly contains the body of U-
Net, restoration decoder and several multi-scale convolutional

Fig. 1. Deeply Supervised Multi-Scale U-Net architecture.

modules. Our proposed framework is illustrated in Fig. 1.

A. Network architecture

In this work, our segmentation framework is built based on
U-Net, and consisted of a restoration decoder and a chain of
multi-scale convolutional modules. An restoration decoder is
introduced to restore input images from the bottom feature
maps. Then the abilities of feature presentation of encoder
branch are strengthened by minimizing loss function between
the input images and restoration images. Moreover, multi-
scale convolutional modules are adopted instead of pooling
in our proposed network. Since pooling, to some extent, tend
to discard useful details that are essential for segmentation.
The multi-scale convolutional modules capture the features
on regions of different sizes, and the modules are added
before concatenation on every level. Based on the above
architecture, Decoder Restoration Supervised U-Net (DRS
U-Net), Decoder Restoration Supervised U-Net with 3 × 3
Kernel Convolution Module (KCMDRS U-Net), and DSMSC
U-Netare is conducted respectively in this work.

B. Restoration decoder module

There are decoder models that contain up-sampling and
convolution layers [15] for semantic segmentation in recent
years. Besides the up-sampling branch on the right of U-
Net, another independent restoration decoder branch with
deconvolution is built to restore input images and calculate
loss function for training.

In order to improve the extracting abilities of the left
branch of U-Net, we adopt the deep supervision, that it is
conducted by a restoration decoder, to the bottom of U-Net.
The feature maps are decoded to the same size as input with
deconvolution operation. There are two layers of 3× 3 kernel
convolution and one 2×2 kernel deconvolution on every level
in the restoration decoder module. Then reconstruction loss is
calculated between the input images and restoration images.
Then, the proposed network is trained to obtain more efficient
and rapidly convergent performance.



(a) Different size kernel convolutional
module

(b) Same size kernel convolutional
module

Fig. 2. Multi-Scale Convolutional Module
C. Multi-scale convolution module

The repeated down-sampling in U-Net reduces the spatial
resolution of feature maps and decline the fine connection
among global-local information. In order to strengthen the
capture fusion of global and local context without changing the
image resolution, we place a multi-scale convolutional module
before the concatenation on every level. Those multi-scale
convolutional modules are composed of one-side convolution,
3 × 3 kernel and 5 × 5 kernel convolution, which apparently
can efficiently overcome the problem of variable target sizes.
The different size kernel convolutional module architecture is
shown in Fig. 2(a). Compared with multi-scale max-pooling,
the convolution operation preserves more pixels location in-
formation for accurate segmentation for its less information
discard. In order to analyze whether the reason of work is
the multi-scale design of convolution or wider network, we
contrast the multi-scale convolutional module with parallel
3 × 3 kernel convolutional module, whose architecture is
illustrated in Fig. 2(b). Then we can analyze the feature
capture abilities of multi-scale convolution for segmentation
and discriminate the representation of multi-scale convolution
from that of the single size of kernel module.

D. Objective Optimization
Generally, there are two loss functions, which are termed as

Loss1 and Loss 2 and illustrated in Fig. 3. Loss 1 is calcu-
lated with the prediction and manual annotation, while Loss
2 present the distance between input images and restoration
images.

We introduce the Binary of Cross-Entropy (BCE) as the loss
function of Loss 1 and Loss 2, which is described as:

L(Y, Ŷ ) = − 1

N

N∑
i=1

(YilogŶi + (1− Yi)log(1− Ŷi)), (1)

where Yi and Ŷi denotes the ground truth and prediction output
F (Xi; Θ) of ith image respectively, and N indexes the batch
size. The final loss optimization is obtained through weighted
summing Loss 1 and Loss 2 by a ratio of 10 to 1.

IV. EXPERIMENTS

We have conducted experimental studies on a kidney and a
pancreas CT image datasets. However, due to the limited page,
we only present the results achieved on the pancreas dataset.
Two existing models, FCN and U-Net, and three proposed
models, DRS U-Net, KCMDRS U-Net, and DSMSC U-Net,
are conducted by using Pytorch for qualitative and quantitative
evaluations. The training, validation, and testing of all models
are performed by using an NVIDIA GeForce GTX 1080Ti
GPU.

Fig. 3. Illusration of the segmentation loss and reconstruction loss.

A. Data and pre-processing

The pancreas CT images, from 283 patients (Decathlon-
10) with pancreas tumor, are divided into three subsets for
training (70%), validation (10%), and testing (20%). Because
of the remaining target region values on red and blue channels,
before training the networks, the mask of targets (pancreas
and its tumor) is generated based on manual annotation. That
means that there are only the target organ and its tumor with
fixed values, while other regions are allocated value with zero.
Thus the mask of the manual annotation is applied as our label
rather than original annotation image.

B. Implementation details

FCN and U-Net have become the state-of-the-art methods
on image segmentation for their high accuracy and efficiency.
Therefore, we choose U-Net and FCN as the baseline mod-
els. Moreover, our proposed DSMSC U-Net and other four
networks are conducted respectively in our experiment. DRS
U-Net is designed to compare with U-Net for the analysis
on deep supervision, and KCMDRS U-Net is implemented to
compare with DRS U-Net and our DSMSC U-Net.

The bottom feature maps in Fig. 3 is up-sampled to 16
fold image, which is as same size as the original input image.
There are five layers whose every step include 3 × 3 kernel
convolution, one-side convolution, and deconvolution opera-
tion. Considering the computation and capacity, the multi-
scale convolutional module is built based on the parallel
construction of one-side convolution, 3×3 kernel convolution,
and 5 × 5 kernel convolution. The feature maps obtained
the same size via appropriate padding. After that, feature
maps are concatenated in the channel dimension. Then one-
side convolution operation is utilized to adjust the number of
channels matching the extension path. And the improvement
of the presentation benefits from the one-side convolution
operation for nonlinearity mapping. Moreover, in order to as
minimizing the variance of each observation as possible to
get more stable convergence, we adopt a trick of gradient
accumulation on the platform Pytorch for the limited memory.

C. Results and Discussion

As summarized in Fig. 4 and Table IV-C, we respectively
present the qualitative and quantitative evaluation.

Two pancreas slices prediction on two rows are shown for
five models in this paper. As shown in Fig. 4, U-Net and FCN
have weakly performance so that the tumor regions can not
be segmented, and its tumor is misregarded as part of the



Fig. 4. The qualitative evaluation.

Table 1 The quantitative evaluation in terms of Dice, PPV, and Sensitivity

Model Pancreas
FCN U-Net DRS U-Net KCMDRS U-Net DSMSC U-Net

Dice 0.8165 0.8052 0.8183 0.8336 0.8283
PPV 0.9073 0.8806 0.8874 0.8962 0.8970

Sensitivity 0.8516 0.8642 0.8725 0.8899 0.9013

pancreas. Then we add the 3× 3 kernel convolution operation
before concatenation on every level, for the reason of filter
classification by the convolution operation. So that KCM U-
Net presents a better prediction on region recognition. And
DRS U-Net gains the segmentation performance in forms of
much more adequacy on region recognization, that is the organ
and its tumor correctly predicted with larger area. As we
can see that MSCM U-Net has more accurate edge segmen-
tation than KCM U-Net. Then the multi-scale convolutional
module and restoration decoder are combined to generate our
proposed method. All models’ performance is evaluated by
Dice Similarity Coefficient (DSC) [16], Positive Predictive
Value (PPV), and Sensitivity. As shown in Table IV-C, the
further convolution operation capture and filtrate the objects
in feature maps to have more decline background distractions
and more accurate interested regions. Moreover, DSMSC U-
Net improve all the three indexes with that DSC is 82.83%,
PPV is 89.70%, and Sensitivity is 90.13%. Our network can
well segment the pancreas and its tumor with various size and
shape, particularly for the very small tumor and special shape
pancreas. Meanwhile, DSMSC U-Net can even well segment
some organs and its tumor for the sharp boundary in very low
contrast against the background.

V. CONCLUSION

To achieve more accurate segmentation, we proposed
DSMSC U-Net. Fig. 4 demonstrates that there is an obvious
mistake on pancreas tumor segmentation when adopting FCN
and U-Net. From the perspective of segmentation details,
KCMDRS U-Net and our DSMSC U-Net can obtain more
accurate results at the boundary of target regions. Particularly,
the multi-scale convolutional module is important for tumor
segmentation because the tumors of different patients are of
different sizes. In order to analyze whether the reason of net-
work work is the multi-scale design of convolution operation
or wider network, we contrast the multi-scale convolutional
module with three parallel 3×3 kernel convolution operation.
And we notice that the the multi-scale design of convolutional
module has a more apparent effect on tumor segmentation. In
spite of there are shape-variability and weak tissue contrast
in pancreas images, our proposed DSMSC U-Net gets the

obvious improvement when comparing with the baselines. Our
experiment results demonstrate that the proposed approach has
better performance than the state-of-the-art baselines.
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