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Abstract—Recently, deep learning methods, in particular, con-
volutional neural networks (CNNs), have made a massive break-
through in computer vision. And a big amount of annotated
data is the essential cornerstone to reach this success. However,
in the medical domain, it is usually difficult (and sometimes
even impossible) to get sufficient data for some specific learning
tasks. Consequently, in this work, a novel data augmentation so-
lution, called semi-supervised attention-guided CycleGAN (SSA-
CycleGAN) is proposed to resolve this problem. Specifically, a
cycle-consistency GANs-based model is first proposed to generate
synthetic tumor (resp., normal) images from normal (resp.,
tumor) images. Then, a semi-supervised attention module is
further proposed to enhance the model’s capability in learning the
important details of the training images, which in turns help the
generated synthetic images become more realistic. To verify its
effectiveness, experimental studies are conducted on three medi-
cal image datasets with limited amounts of MRI images, and the
proposed SSA-CycleGAN is applied to generate synthetic tumor
and normal MRI images for data augmentation. Experimental
results show that i) SSA-CycleGAN can add (resp., remove)
tumor lesions on (resp., from) the original normal (resp., tumor)
images and generate very realistic synthetic tumor (resp. normal)
images; and ii) in the ResNet18-based MRI image classification
tasks based on these datasets, data augmentation using SSA-
CycleGAN achieves much better classification performances than
the classic data augmentation methods.

Index Terms—Generative adversarial networks (GANs), Data
Augmentation, Attention module, Medical image processing

I. INTRODUCTION

In recent years, there are great progresses in the field
of Generative Adversarial Networks (GANs) [1] and its ex-
tensions. The wide and successful applications of GANs in
image generation tasks [2]–[4] have attracted growing interests
across many communities, including medical imaging. GANs
is a minimax game between two Neural Networks, where a
generator is used to generate samples, and a discriminator
identifies the source of samples. In this game, the adversarial
loss brought by the discriminator provides a clever way to
capture high dimensional and complex distributions, which
imposes higher-order consistency that is proven to be useful
in many cases, such as domain adaptation, data augmentation,
and image-to-image translation.

It is widely known that a big amount of annotated data is
important to reach the successes of deep learning based com-

puter vision tasks. Data that are very imbalanced on classes or
with poor diversity usually lead to bad model performances.
This often proves to be problematic in the field of medical
imaging, where abnormal findings are, as literally shown,
uncommon. Although traditional data augmentation schemes
(e.g., crop, rotation, flip, and translation) can mitigate some of
these issues, the augmented images usually have similar distri-
butions to the original images, leading to limited performance
improvements. Also, the diversity that the augmented images
can bring is relatively small. Motivated by GANs, researchers
try to add synthetic samples to the training process for data
augmentation. GANs-based data augmentation can improve
performance by introducing additional distribution informa-
tion that uncovered by original images. Consequently, it can
generate new and realistic medical images, and help achieve
outstanding performance in medical image analysis [5]–[7].

Despite these efforts, some specific GANs-based data aug-
mentation tasks in medical imaging, e.g., converting a normal
image without tumor to a tumor image, are still challenging.
Essentially, this is an image generation problem, but unlike the
style translation task, e.g., synthesizing PET image from CT
scans [8] or MRI [9], due to the requirement of only modifying
some image features while keeping others unchanged, the
attribute manipulation in these tasks is a challenging problem.
One solution is to translate medical images to another domain
firstly, and capture tumor feature leading by tumor annotations
in the another domain [10], and then merge the tumor feature
to normal images with randomly selected place and size in
the another domain, finally, the merged images in the another
domain is translated to medical image domain. This method
convert the attribute manipulate task to style transform task.
The other solution is to generate tumor masks manually,
and then generate tumor in the area under the tumor mask.
However, these solutions define the position and size of
tumors either manually or randomly, which may break image
prior, and cause unacceptable additional false positives in the
following image processing tasks.

To overcome the above problem, in this paper, we pro-
pose a novel GAN-based data augmentation model guided
by semi-supervised attention mechanisms. Inspired by Cy-
cleGAN [11], the proposed data augmentation model com-



prises of two generators and two discriminators. The gen-
erator GN→T : Normal → Tumor and the in-
verse generator GT→N : Tumor → Normal introduce
two cycle-consistence losses Lcycle(N,GT→N (GN→T (N))),
Lcycle(T,GN→T (GT→N (T ))) to add constraint to the training
procedures of mapping functions GT→N and GN→T , because
they are highly under-constrained. Then, attention modules are
introduced to locate the place where the generators should
pay more attention to translate. In order to locate the place
to translate more accurately, the attention module inside the
generator GT→N is trained by both adversarial loss (unsuper-
vised) and pixel-wise loss (supervised), so we call it semi-
supervised attention mechanisms. Moreover, we add spectral
normalization [12] to stabilize the training of discriminators.

We evaluate the generated images’ realism by observing the
quality of synthetic images. The results showed that our model
could generate more realistic images compared to baseline
models. And we evaluate the performance of the proposed
SSA-CycleGAN data augmentation model by conducting tu-
mor classification experiments with/without synthetic images.
The results showed that our model can boost 9.78% sensitivity
and 5.97% specificity compare to classic data augmentation
methods.

The contributions of this paper are summarized as follows:
• SSA-CycleGAN model for medical image generating:

We propose a novel semi-supervised attention-guided
CycleGAN to add (resp., remove) tumor lesions on (resp.,
from) the original normal (resp., tumor) images and
generate very realistic synthetic tumor (resp. normal)
images. We are the first that generate tumor lesions in
normal images without human interupt, so that the image
prior will not be demage.

• Synthetic medical image for data augmentation: In
the ResNet18-based medical image classification task,
models trained on datasets combines synthetic medical
images with origin images achieve much better classifica-
tion performances than models trained on origin datasets
with classic data augmentation methods.

II. RELATED WORK

Generative Adversarial Networks(GANs) [1] have two
models to train: a model G to learn the target data distribution
pdata(x), a model D to assess the source of D’s input, is it
from pdata(x) or from model G(z). The aim of the training
model G is to maximize the chance of model D making
mistakes, while the aim of training model D is to maximize
the probability of assigning the correct label to both training
examples and samples from G. The adversarial loss is the key
to GAN’s success. It forces the model to generate images that
indistinguishable from real images.

Attention-guided GANs can generate more realistic images
since the learned attention enforce the generator pay more
attention to the place that lead to a realistic image generation.
Mejjati et al. [13] proposed an attention mechanism that is
jointly trained with the generators and discriminators. Chen et
al. proposed AttentionGAN [14], an extra attention network

is used to generate attention maps. Kastaniotis et al. [15]
proposed ATAGAN, a teacher network is used to produce
attention maps. Zhang et al. [16] proposed a Self-Attention
Generative Adversarial Networks (SAGAN), the Non-Local
Module [17] was used to produce the attention map. Liang et
al. [18] proposed a Contrasting GAN that takes the segmen-
tation mask as the attention map. Sun et al. [19] proposed an
attention GANs using FCN to generate a facial mask for face
attribute manipulation.

To the best of our knowledge, there are two research groups
tried to generate brain tumor images. Shin et al. [10] tried to
duplicate tumors from BRATS dataset to normal MRI images
from ADNI dataset. They proposed a two-stage model for
the translation task. The first is an GANs-based image-to-
brain model to generate brain masks with white matter, grey
matter, and CSF. The second stage is a GANs-based brain-to-
image model. The brain masks generated in the stage one was
merged with tumor masks. The merged brain masks as input
to the brain-to-image model generate abnormal MRI images
with brain tumors. However, there are some limits in this two-
stages model. Firstly, there are no brain mask annotations in
the BRATS dataset. Thus the tumor mask that merged to brain
mask is inferred by the model trained on ADNI dataset. But
the ADNI dataset does not contain tumor information, so the
quality of the generated tumor mask is doubtful. Secondly,
the position of the tumor merged to brain mask was decided
randomly. However, the tumor location is related to other
feature of the tumor, such as size, shape, degree of malignancy,
the attempt that randomly locate a wrong tumor location that
unpaired to the specific tumor features may damage the image
prior, causing higher false positives and less robustness.

Han et al. [20] proposed a CPG-GAN model for generating
tumors from noise. The ’condition’ in their model is a [0, 1]
mask, where 0 stands for the normal area, 1 stands for the
area that needs to generate a tumor. However, there are some
problems in their work: Firstly, like shin et al.’s work [10],
the position of the tumor is decided randomly, which may
damage the image prior. The experiment results in their work
prove it: the FPs per slice increases 3.52 with only 0.1 increase
of sensitivity in the detection task. Secondly, the adversarial
loss is not enough to generate a realistic tumor image. The
synthetic tumor images are in poor image quality.

III. OUR APPROACH

The goal of our work is to generate tumor (resp., normal)
images from normal (resp., tumor) images by introducing
additional distribution information uncovered by original im-
ages. As illustrated in Fig. 1, our data augmentation method
includes two mapping function G1 : Normal → Tumor
and G2 : Tumor → Normal. Meanwhile, there are two
adversarial discriminators D1: distinguish between real tumor
images {Tr} and generated tumor images from real normal
images {T r

g } , and D2: distinguish between real normal images
{Nr} and generated normal images from real tumor images
{Nr

g }.
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Fig. 1. The framework of the proposed data augmentation model.
’T’ represents for Tumor samples, ’N’ represents for Normal sam-
ples. G1/G2: The Attention-guided generator, D1/D2: The Attention-
guided discriminator.

A. Attention-Guided Generator

Unlike style translation tasks in domain translation tasks,
translation between normal images to tumor images require to
solve two tasks: 1) location the area to translate, and 2) taking
the proper translation in the located area. So we proposed
two attention networks AN and AT to achieve this. Where
AN aims to select the area to generate tumor that maximizes
the probability that the discriminator makes a mistake and
minimizes the probability that the generator makes a mistake;
AT aims to locate the place that has tumor and generates the
possibility map, which will guide the generator recover the
normal images from tumor images.

In the forward processing, the generated image contains two
parts, the foreground from the generator and the background
from the input image. Take the translation from normal sam-
ples to tumor samples as an expmple. Firstly, the normal brain
MRI {Nr} ∈ N is fed into the generator GN→T , which maps
{Nr} to the target domain T , resulting the generated tumor
image GT ′ = GN→T ({Nr}). Then, the same input {Nr} is
fed into the attention module AN , resulting in the attention
map MN ′ = AN ({Nr}). To create the ‘foreground’ object
{T ′f} ∈ T , we apply MN ′ to GT ′ via an element-wise product:
{N ′f}=MN ′ � GT ′ . Secondly, the inverse of attention map
M ′N ′ = 1 −MN ′ will be applied to the input image via an
element-wise product as the background. Thus, the mapped
image{Tg} is obtained by:

Tg =MN′ �GT ′︸ ︷︷ ︸
Foreground

+M ′N′ �Nr︸ ︷︷ ︸
Background

. (1)

Translation from Tumor to Normal (𝑭𝑻→𝑵) Translation from Normal to Tumor (𝑭𝑵→𝑻)

𝐴𝑇

𝐺𝑇→𝑁
Pixel-wise

Multiply

Pixel-wise

Add

Pixel-wise

Multiply

T

𝑴𝑻′

𝑮𝑵′

𝑴𝑻′
′

𝑵′

N-T 

Translation

(𝑭𝑵→𝑻)

𝑻𝑵
′

𝐴𝑁

𝐺𝑁→𝑇
Pixel-wise

Multiply

Pixel-wise

Add

Pixel-wise

Multiply

N

𝑴𝑵′

𝑮𝑻′

𝑴𝐍′
′

𝑻′

T-N 

Translation

(𝑭𝑻→𝑵)

𝑵𝑻
′

Fig. 2. The framework of the proposed attention-guided generator.
The attention-guided generators have built-in attention mechanism,
which can detect the most discriminative part of images. Then, we
mix the input image and the attention mask to synthesize the targeted
image.

We only described the mapping FN→T ; the inverse mapping
FT→N is defined similarly. Fig. 2 visualizes those processes.

B. Attention-Guided Discriminator

Eq. 1 constrains the generators to modify only on the atten-
tion regions, however, the discriminatorsconsider the whole
image currently. Vanilla discriminator DT takes the whole
generated image {Tg} and the whole real image {Tr} ∈ T as
input and tries to distinguish them. We add attention mecha-
nism to discriminators so that the discriminators only consider
the regions inside the attention map. The attention-guided
discriminator takes the attention mask, the generated images,
and the real images as inputs. For example, attention-guided
discriminator DA

T tries to distinguish between synthetic tumor
images with attention maps MN ′ � Tg and real tumor images
with attention map MN ′ � Tr. Similar to DA

T , DA
N tries to

distinguish between the synthetic normal images with attention
maps MT ′ �Ng and real normal images with attention maps
MT ′�Nr. Discriminators can focus on the most discriminative
content by this attention-guided method.

C. Spectral Normalization

It is wildly known that GANs is challenging to train because
of the objective function of the vanilla GANs is equivalent to
the J-S divergence between the distribution pg of the generated
data and the distribution pr of the real data. However, J-
S metric fails to provide a meaningful value when two
distributions are disjoint. It makes no guarantee convergence
to a unique solution such that pr = pg . Then, WGAN [3]
was proposed to replace the J-S divergence in the vanilla
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Fig. 3. The training loss of the proposed GAN-based network.

GANs with Wasserstein distance. The KR duality principle
is used to transform the Wasserstein distance problem into
a solution to the optimal Lipschitz continuous function. The
spectral normalization proposed by Miyato et al. [12] use a
more elegant way to make the discriminator meet Lipschitz
continuity.

D. Semi-supervised Attention Mechanism

Tumor segmentation annotations are available in our case.
And the attention map in tumor → normal translation is
exactly the whole tumor region. Therefore, we supervise the
training process of attention network AT by segmentation
label. Given a training set {(T1,M1), · · · , (TN ,MN )} of
N examples, where Mi stands for the tumor annotation of
segmentation. To reduce changes and constrain generators, we
adopt pixel-wise loss between the tumor annotation Mi and
the generated attention map MT ′

i
. We express this loss as:

LM (Mi,MT ′
i
) = ‖Mi −MT ′

i
‖1. (2)

This added loss makes our model more robust by encour-
aging the attention maps to be sharp (converging towards a
binary map), while the attention mask of normal areas will
always be zero.

E. Optimization Objective

Fig. 3 shows the training loss of the proposed data augmen-
tation model.
Attention-guided Adversarial Loss. The attention-guided
adversarial loss is proposed to training the attention-guided
discriminators. It can be formulated as follows:

LN
AGAN (GN→T , D

A
T ) = Et∼pdata(t)

[
logDA

T (MN′ � t)
]
+

En∼pdata(n)[log(1−DA
T (MN′ �GN→T (n)))].

(3)

GN→T aims to translation the normal image to tumor image
and maximize the probability that the discriminator makes a
mistake. DA

T is trained to distinguish between the generated
image with its attention mask MN ′ �GN→T (n) and the real
image (MN ′ � t). Which means GN→T tries to minimize the
attention-guided adversarial loss LGAN (GN→T , D

A
T ), while

DA
T tries to maximize it. There is an another loss for the

discriminator DA
N and the generator GT→N :

LT
AGAN (GT→N , D

A
N ) = En∼pdata(n)

[
logDA

N (MT ′ � n)
]
+

Et∼pdata(t)[log(1−D
A
N (MT ′ �GT→N (t)))].

(4)

Cycle-Consistency Loss. The cycle-consistency loss can be
used to enforce forward and backward consistency. For ex-
ample, if a tumor image translates to a normal image, the
translation from the synthetic normal image to the tumor image
should be brought back to a cycle. Thus, the loss function of
cycle-consistency is defined as:

Lcycle(GN→T , GT→N ) =

En∼pdata(n)[‖GT→N (GN→T (n))− n‖1]+
Et∼pdata(t)[‖GN→T (GT→N (t))− t‖1].

(5)

Loss Function. We obtain the final loss function by com-
bining the adversarial loss, cycle-consistency loss, and semi-
supervised pixel losses for both source and target domains:

L(GN→T , GT→N , AN , AT , D
A
N , D

A
T ) =

λgan(LN
AGAN + LT

AGAN )+

λcyc × Lcycle(GN→T , GT→N ) + LM (Mi,MT ′
i
).

(6)

IV. EXPERIMENTS AND RESULTS

We present sets of experiments and results in this section. To
evaluate the performance of proposed CycleGAN-based data
augmentation method, we employed a convolutional neural
network with the deep residual block (ResNet18) [21] to com-
pare the classification results using generated tumor images
to the classification results of real images. We implemented
five models to generate tumor images, as described in Section
IV.A.b.

For the implementation of the tumor classification model
ResNet18 and GAN-based data augmentation architecture,
we used the Pytorch framework. All training processes were
performed in an NVIDIA GeForce GTX 1080 Ti GPU.

A. Dataset Evaluation and Implementation Datails

1) Classification: For brain tumor classification, we chose
ResNet18 [21] because it is an small model with limited
number of parameters, making it potentially more portable and
less prone to overfitting. In this study, we split the datasets into
70% training, 20% validation, and 10% test images.

We calculated sensitivity and specificity to meature the
performance of our data augmentation method in tumor clas-
sification task. In the following equations, we present these
measures:

Sensitivity/Recall =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

where T stands for correct classification, in the opposite,
F stands for the wrong classification. P stands for the



TABLE I
GAN-BASED DATA AUGMENTATION PREFERENCE IN CLASSIFICATION

Dataset Measures
Real Images

(With classic DA methods)
Ours CycleGAN Spec-CycleGAN Attention-CycleGAN SpecAtte-CycleGAN

Brats19 Sensitivity 67.66 77.44 69.15 72.69 68.07 72.82

Specificity 72.69 78.66 77.17 77.98 73.91 78.66

Brats18 Sensitivity 69.83 78.38 71.60 75.27 71.32 75.27

Specificity 73.77 80.16 75.81 79.07 76.36 77.17

Brats15 Sensitivity 69.45 80.93 70.60 72.69 71.73 74.04

Specificity 71.32 80.43 78.38 77.52 76.63 76.90

CycleGAN Spectral-CycleGAN Attention-CycleGANSSAGAN (Ours) SpecAtte-CycleGAN

Reversed

Normal

Image

Attention
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Fig. 4. Results on normal-tumor translation and the inverse tumor-
normal translation. Top row shows the input normal image (upper
left) and the generated tumor images by difference models. The
second row shows the attention mask generated by upper model. The
third row shows the reverse normal images generated by feeding the
generated tumor images to the tumor-normal translation.

classification result is tumor category, and N stands for the
classification result is normal category. So, TP stands for the
tumor image is classification to the tumor category, TN stands
for the normal image is classification to the normal category,
FP stands for the normal image is classification to the tumor
category, and FN stands for the tumor image classification to
the normal category.

2) Baselines: We compare our model with leading image to
image translation model: CycleGAN [11], and the extension
of CycleGAN: Attention-guided CycleGAN [13]. For a fair
comparison, we then add the spectral normalization method
to those models.

3) Datasets: We use the Brats15, Brats18, and Brats19
datasets provided by Menze et al. [22] to evaluate our data
augmentation method. These datasets contain a segmentation
mask for each case, and for each case, there are four modal

TABLE II
CLASSIFICATION RESULTS OF DIFFERENT RATIO BETWEEN REAL IMAGES

AND SYNTHETIC IMAGES

Dataset Composition Sensitivity Specificity

Brats19 130 real cases 67.66 72.69

+65 synthetic cases 71.32 72.14

+130 synthetic cases 77.44 78.66

+260 synthetic cases 77.52 77.44

+390 synthetic cases 74.86 75.27

Brats18 105 real cases 69.83 73.77

+53 synthetic cases 72.47 76.94

+105 synthetic cases 78.38 80.16

+210 synthetic cases 78.09 77.80

+315 synthetic cases 77.52 76.36

Brats15 110 real cases 69.45 71.32

+55 synthetic cases 73.16 80.16

+110 synthetic cases 80.93 80.43

+220 synthetic cases 76.08 77.44

+330 synthetic cases 76.36 75.81

MRI images: T1, T1c, T2, and Flair. We choose T1c modal
MRI images as the input of both the data augmentation task
and classification task because T1c modal MRI images can
grade the tumor stage and determine the region of the tumor.
Which means that the T1c modal MRI images contain more
information about tumor compare to other modal images.

Brats19 dataset has 259 cases of 3D brain MRI images
with glioma. To test the performance of the proposed data
augmentation model under the situation that the training data
is limited, we randomly select half cases as the training data,
and then randomly select 10% from another half cases as the
testing data. We did the same to Brats18 and Brats15 datasets.

B. Evaluation of the Data Augmentation

1) Qualitative results: Fig. 4 illustrates examples of syn-
thetic images by our data augmentation method. Observing the
generated images and learned attention maps by our model, we
can see that our model successfully captures the T1c-specific
texture and tumor appearance in the right position.

2) Quantitative results: Table. I and Table. II show the
performance of our data augmentation method in the im-



age classification task. The results in Table. I proved our
hypothesis that adding generated samples can improve the
classification performance. The results in Table. II showed
the best ratio of real samples and generated samples in the
classification task. The results showed that the best ratio is
1:1.

V. CONCLUSIONS

This work focus on generating tumor images from normal
images and recovering normal images from tumor images with
SSA-CycleGAN. This CycleGAN-based data augmentation
method can enlarge small medical datasets, fulfill data distri-
bution. While recent GAN-based data augmentation methods
in medical image can generate abnormal sample, they also
have some limits. For example, previous works need masks to
lead the generator to generate tumors in the proposed places,
also, it is hard for GANs-based model to generate a large-size
medical image. Most generated abnormal samples are small
(32px × 32px). The data augmentation method we proposed
can generate abnormal images of a real medical image size
(In this case, 240px × 240px). We expect to get significant
improvements in the quality of generated abnormal images
by incorporating an attention module into both generator
and discriminator. However, then we found that the attention
mapping is not robust since the shape of abnormal lesion is
changing between images. So we add a semi-supervised mech-
anism to stabilize this training procedure. The result shows
that this approach improves the robust of attention modules.
Experimental results on three datasets demonstrate that our
data augmentation method can generate striking results with
convincing details than the state-of-the-art models.

There are several limitations to this work. One possible
extension could be the evaluation from the classification task
to the segmentation task. Data insufficient happens more in
the field of tumor/lesion segmentation. In the future, we
plan to extend our work to other medical domains that can
benefit from generated abnormal images to improve training
performance.
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