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Abstract
Hierarchical reinforcement learning (HRL) has recently
shown promising advances on speeding up learning, improv-
ing the exploration, and discovering intertask transferable
skills. Most recent works focus on HRL with two levels, i.e., a
master policy manipulates subpolicies, which in turn manip-
ulate primitive actions. However, HRL with multiple levels
is usually needed in many real-world scenarios, whose ulti-
mate goals are highly abstract, while their actions are very
primitive. Therefore, in this paper, we propose a diversity-
driven extensible HRL (DEHRL), where an extensible and
scalable framework is built and learned levelwise to realize
HRL with multiple levels. DEHRL follows a popular assump-
tion: diverse subpolicies are useful, i.e., subpolicies are be-
lieved to be more useful if they are more diverse. However,
existing implementations of this diversity assumption usually
have their own drawbacks, which makes them inapplicable to
HRL with multiple levels. Consequently, we further propose
a novel diversity-driven solution to achieve this assumption
in DEHRL. Experimental studies evaluate DEHRL with nine
baselines from four perspectives in two domains; the results
show that DEHRL outperforms the state-of-the-art baselines
in all four aspects.

Introduction
Hierarchical reinforcement learning (HRL) recombines se-
quences of basic actions to form subpolicies (Sutton, Precup,
and Singh 1999; Parr and Russell 1998; Dietterich 2000).
It can be used to speed up the learning (Bacon, Harb, and
Precup 2017), improve the exploration to solve tasks with
sparse extrinsic rewards (i.e., rewards generated by the en-
vironment) (Şimşek and Barto 2004), or learn meta-skills
that can be transferred to new problems (Frans et al. 2018).
Although most previous approaches to HRL require hand-
crafted subgoals to pretrain subpolicies (Heess et al. 2016)
or require extrinsic rewards as supervisory signals (Vezh-
nevets et al. 2016), the recent ones seek to discover sub-
policies without manual subgoals or pretraining. Most of
them (Xu et al. 2018a; Bacon, Harb, and Precup 2017) are
working in a top-down fashion, where a given agent first ex-
plores until it accomplishes a trajectory that reaches a pos-
itive extrinsic reward, and then tries to recombine the basic
actions in the trajectory to build subpolicies.
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However, such top-down solutions are not practical in sit-
uations with sparse extrinsic rewards and large action space,
where extrinsic rewards are almost unreachable by explo-
ration using primitive actions. Therefore, more recent works
focus on discovering “useful” subpolicies in a bottom-up
fashion (Lakshminarayanan et al. 2016; Kompella et al.
2017), which are capable of discovering subpolicies be-
fore reaching any extrinsic rewards. In addition, the bottom-
up strategy can discover subpolicies that better facilitate
learning for an unseen problem (Frans et al. 2018). This is
also called meta-reinforcement-learning (Al-Shedivat et al.
2018), where subpolicies are shared across different tasks
and thus called meta subpolicies.

However, none of the above methods shows the capabil-
ity to build extensible HRL with multiple levels, i.e., build-
ing subpolicies upon subpolicies, which is usually needed in
many real-world scenarios, whose ultimate goals are highly
abstract, while their basic actions are very primitive. We take
the game OverCooked in Figure 1 as an example. The ulti-
mate goal of OverCooked is to let an agent fetch multiple
ingredients (purple boxes) in a particular sequence accord-
ing to a to-pick list (orange box), which is shuffled in every
episode. However, the basic action of the agent is so primi-
tive (thus called primitive action in the following) that it can
just move one of its four legs towards one of the four direc-
tions at each step (marked by red arrows), and the agent’s
body can be moved only when all four legs are moved to the
same direction. Consequently, although we can simplify the
task by introducing subpolicies to learn to move the body
towards different directions with four steps of primitive ac-
tions, it is still difficult to reach the ultimate goal, because
the to-pick list changes in every episode.

Fortunately, this problem can be easily overcome if HRL
has multiple levels: by defining the previous subpolicies as
subpolicies at level 0, HRL with multiple levels can build
subpolicies at level 1 to learn to fetch different ingredients
based on subpolicies at level 0; obviously, a policy based on
subpolicies at level 1 is capable to reach the ultimate goal
more easily than that based on subpolicies at level 0. Moti-
vated by the above observation, we propose Diversity-driven
Extensible HRL (DEHRL), which is constructed and trained
levelwise (i.e., each level shares the same structure and is
trained with exactly the same algorithm) to make it extensi-
ble to build higher levels. DEHRL follows a widely adopted



Act every 
48 steps

Level 2
Learned policy at level 2:  Fetching ingredients in the order specified by

Env

Subpolicies at level 0:
Actions:
Actions the agent can 
take at each step 
(moving one leg 
towards one direction).

A list of ingredients 
to be picked.

To-pick list:

Ingredients:
Ingredients waiting 
to be picked.

Picked list:
Picked ingredients.

Learned subpolicies at level 1: 

Moving body towards different directions (    )

Fetching different ingredients (    )

to-pick list 

Act every 
4 steps

Level 1

Act every 
1 steps

Level 0

Figure 1: Playing OverCooked with HRL of three levels.

diversity assumption (Gregor, Rezende, and Wierstra 2016;
Florensa, Duan, and Abbeel 2017): subpolicies are believed
to be more useful if they are more diverse. Therefore, the
objective of DEHRL at each level is to learn correspond-
ing subpolicies that are as diverse as possible, thus called
diversity-driven. The intuition of this diversity assumption is
as follows: in real-world situations, when there is no specific
stimulation, people tend to learn skills as diverse as possible
to prepare for potential future needs; similarly, when there
is no extrinsic reward, by learning subpolicies as diverse as
possible, an agent will be able to explore its own capability
as much as possible.

However, existing implementations of the diversity as-
sumption usually have their own drawbacks, which make
them inapplicable to HRL with multiple levels: (i) The im-
plementation in (Daniel et al. 2016) works in a top-down
fashion, making it impractical in situations with sparse ex-
trinsic rewards. (ii) Although SAC-LSP in (Haarnoja et al.
2018) can also learn policy of multiple layers, whether
it can operate different layers at different temporal scales
is an open problem, making it also unable to solve tasks
with sparse extrinsic rewards. (iii) The implementation in
(Gregor, Rezende, and Wierstra 2016; Florensa, Duan, and
Abbeel 2017) is not extensible to higher levels.

Consequently, we further propose a novel diversity-driven
solution to achieve this diversity assumption in DEHRL. We
first introduces a predictor at each level to dynamically pre-
dict the resulting state of each subpolicy. Then, the diversity
assumption is achieved by giving higher intrinsic rewards
(rewards generated by the agent) to subpolicies that result in
more diverse states. Consequently, subpolicies converge to
taking actions that result in most diverse states.

The contributions of this paper are summarized as fol-
lows. (i) We propose a diversity-driven extensible hierar-
chical reinforcement learning (DEHRL) approach, which, to
our knowledge, is the first learning algorithm that is built and
learned levelwise with verified scalability, so that HRL with
multiple levels can be realized end-to-end without human-
designed extrinsic rewards. (ii) We further propose a new
diversity-driven solution to achieve the widely adopted di-

versity assumption in HRL with multiple levels. (iii) Exper-
imental studies are conducted to compare DEHRL with nine
baselines from four perspectives in two domains. The re-
sults show that: (a) DEHRL can discover useful subpolicies
more effectively; (b) DEHRL can solve the sparse extrinsic
reward problem more efficiently; (c) DEHRL can learn bet-
ter intertask-transferable meta subpolicies; and (d) DEHRL
has a good portability.

Diversity-Driven Extensible HRL
The structure of DEHRL is shown in Figure 2, where each
level l contains a policy (denoted πl), a predictor (denoted
βl), and an Intrinsic Reward Function Module (abbreviated
as IRFM). The policy and predictor are two deep neural net-
works (i.e., parameterized functions) with πl and βl denot-
ing their trainable parameters, while IRFM contains a set of
unparameterized functions. For any two neighboring levels
(e.g., level l and level l − 1), there are three connections as
shown in Figure 2: (i) the policy at the upper level πl pro-
duces an action alt, which is treated as an input for the policy
at the lower level πl−1; (ii) the predictor at the upper level βl
makes several predictions, which are passed to IRFM at the
lower level l − 1; (iii) using the predictions from the upper
level l, IRFM at the lower level l−1 generates an intrinsic re-
ward bl−1t to train the policy at the lower level πl−1. The rest
of this section introduces some important information of the
proposed DEHRL framework and the diversity-driven solu-
tion; more details and theoretical interpretations of DEHRL
can be found in (Song et al. 2018a).

Policy
As shown in Figure 2, the policies for different levels act at
different frequencies, i.e., the policy πl samples an action
every T l steps. Note that T l is always an integer multiple
of T l−1, and T 0 always equals to 1, so the time complex-
ity of the proposed framework does not grow linearly as the
level goes higher. T l for l > 0 are hyper-parameters. At
level l, the policy πl takes as input the current state st and
the action from the upper level al+1

t , so that the output of πl



is conditional to al+1
t . Note that al+1

t ∈ Al+1, where Al+1

is the output action space of πl+1. Thus, A0 should be set
to the action space of the environment for the policy π0 di-
rectly taking actions on the environment, while Al of l > 0
are hyper-parameters. The policy takes as input both st and
al+1
t to integrate multiple subpolicies into one model; a sim-

ilar idea is presented in (Florensa, Duan, and Abbeel 2017).
The detailed network structure of the policy πl is presented
in (Song et al. 2018a). Then, the policy πl produces the ac-
tion alt ∈ Al by sampling from a parameterized categorical
distribution:

alt = πl(st, a
l+1
t ). (1)

The reward to train πl combines the extrinsic reward from
the environment renv

t and the intrinsic reward blt generated
from IRFM at level l. When facing games with very sparse
extrinsic rewards, where renv

t is absent most of the time, blt
will guide the policy at this level πl to learn diverse sub-
policies, so that the upper level policy πl+1 may reach the
sparse positive extrinsic reward more easily. The policy πl
is trained with the PPO algorithm (Schulman et al. 2017),
but our framework does not restrict the policy training algo-
rithm to use. The following denotes the loss of training the
policy πl:

Llpolicy = PPO
(
alt, (r

env
t + λblt)|πl

)
, (2)

where πl means that the gradients of this loss are only passed
to the parameters in πl, and λ is a hyper-parameter set to 1
all the time (the section on IRFM below will introduce a
normalization of the intrinsic reward blt, making λ free from
careful tuning).

Predictor
As shown in Figure 2, the predictor at level l (i.e., βl) takes
as input the current state st and the action taken by the policy
at level l (i.e., alt) as a one-hot vector. The integration of
st and alt is accomplished by approximated multiplicative
interaction (Oh et al. 2015), so that any predictions made by
the predictor βl is conditioned on the action input of alt. The
predictor makes two predictions, denoted ŝt+T l and b̂l−1t ,
respectively. Thus, the forward function of βl is:

ŝt+T l , b̂l−1t = βl(st, a
l
t). (3)

The detailed network structure of the predictor βl is given
in (Song et al. 2018a). The first prediction ŝt+T l in (3) is
trained to predict the state after T l steps with following loss
function:

Lltransition = MSE(st+T l , ŝt+T l |βl), (4)

where MSE is the mean square error, and βl indicates that
the gradients of this loss are only passed to the parameters
in βl. The second prediction b̂l−1t in (3) is trained to approx-
imate the intrinsic reward at the lower level bl−1t , with the
loss function

Llintrinsic reward = MSE(bl−1t , b̂l−1t |βl), (5)

where βl means that the gradients of this loss are only passed
to the parameters in βl. The next section about IRFM will
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Figure 2: The framework of DEHRL.

show that the intrinsic reward bl−1t is also related to the ac-
tion al−1t sampled according to the policy at the lower level
πl−1. Since al−1t is not fed into the predictor βl, the intrin-
sic reward b̂l−1t is actually an estimation of the expectation
of bl−1t under the current πl−1:

b̂l−1t = Eπl−1{bl−1t }. (6)

The above two predictions will be used in IRFM, described
in the following section.

The predictor is active at the same frequency as that of
the policy. Each time the predictor βl is active, it produces
several predictions feeding to IRFM at level l− 1, including
b̂l−1t and {ŝt+T l |¬alt}, where {ŝt+T l |¬alt} denotes a set of
predictions when feeding the predictor βl with actions other
than alt. In practice, the predictor is affected by the distri-
bution of the sampled data from the online policy; DEHRL
thus adds an entropy regularization loss in the training to
encourage the policy to be uniform over its action space.

Intrinsic Reward Function Module (IRFM)
As shown in Figure 2, taking as input b̂l−1t and {ŝt+T l |¬alt},
IRFM produces the intrinsic reward bl−1t , which is used
to train the policy πl−1, as described in the policy sec-
tion. The design of IRFM is motivated as follows: (i) If
the currently selected subpolicy πl−1(st, alt) for the upper-
level action alt differs from the subpolicies for other ac-
tions (i.e., {πl−1(st,¬alt)}), then the intrinsic reward bl−1t



Table 1: The settings of DEHRL.

A0 A1 A2 T 0 T 1 T 2

16 5 5 1 1*4 1*4*12

should be high; (ii) The above difference can be measured
via the distance between the states resulting from the sub-
policy πl−1(st, a

l
t) and subpolicies {πl−1(st,¬alt)}. Note

that since alt is selected every T l steps, these resulting states
are the ones at t+ T l.

In the above motivation, the resulting state of the subpol-
icy πl−1(st, alt) is the real state environment returned after
T l steps (i.e., st+T l ), while the resulting states of the sub-
policies {πl−1(st,¬alt)} have been predicted by the predic-
tor at the upper level l (i.e., {ŝt+T l |¬alt}), as described in
the last section. Thus, the intrinsic reward bl−1t is computed
as follows:

bl−1t =
∑

s∈{ŝ
t+Tl |¬alt}

D(st+T l , s), (7)

where D is the distance chosen to measure the distance be-
tween states. In practice, we combine the L1 distance and
the distance between the center of mass of the states, to ob-
tain information on color changes as well as objects mov-
ing. A more advanced way to measure the above distance is
to match features in states and to measure the movements
of the matched features, or to integrate the inverse model
in (Pathak et al. 2017) to capture the action-related feature
changes. However, the above advanced ways are not investi-
gated here, due to the scope of the paper. Equation (7) gives a
high intrinsic reward, if st+T l is far from {ŝt+T l |¬alt} over-
all. In practice, we find that punishing st+T l from being too
close to the one state in {ŝt+T l |¬alt} that is closest to st+T l

is a much better choice. Thus, we replace the sum in (7) with
the minimum, and find that it consistently gives the best in-
trinsic reward estimation.

Estimating the intrinsic reward with distances of high di-
mensional states comes with the problem that the changes in
distance that we want the intrinsic reward to capture is ex-
tremely small, compared to the mean of the distances. Thus,
we use the estimation of the expectation of the intrinsic re-
ward bl−1t (i.e., b̂l−1t described in last section) to normal-
ize bl−1t :

bl−1t ← bl−1t − b̂l−1t . (8)
In practice, this normalization gives a stable algorithm with-
out need to tune λ according to the distance that we choose
or the convergence status of the predictor at the upper level.

Experiments
We conduct experiments to evaluate DEHRL with nine base-
lines from four perspectives based on two domains, Over-
Cooked (shown in Figure 1) and Minecraft. The important
hyper-parameters of DEHRL are summarized in Table 1,
while other details (e.g., neural network architectures and
hyper-parameters in the policy training algorithm) are pro-
vided in (Song et al. 2018a). Easy-to-run codes have been

... ...(625 possibilities states after       =4 steps)

current state five most useful states

Figure 3: State examples of Overcooked.

released to further clarify the details and facilitate future re-
search1, where evaluations and visualizations on more do-
mains, such as Montezuma’s Revenge and PyBullet (an open
source alternative of MuJoCo), can also be found.

Subpolicy Discovery
We first evaluate the performance of DEHRL in discovering
diverse subpolicies in OverCooked. As shown in Figure 1,
an agent in OverCooked can move one of its four legs to-
wards one of four directions at each step, so its action space
is 16. Only after all four legs are moved towards the same
direction, the body of this agent can be moved towards this
direction. There are four different ingredients at the corners
of the kitchen (purple boxes). An ingredient is automatically
picked up when the agent reaches it. There is a list of ingre-
dients that the chief needs to pick in sequence to complete a
dish (orange box), called to-pick list.

Without Extrinsic Rewards. We first aim to discover
useful subpolicies without extrinsic rewards. Since there are
four legs, and every leg of an agent has five possible states
(staying or moving towards four directions), there are totally
54 = 625 possible states for every T 0 = 4 steps. As shown
in Figure 3, five of them are the most useful states (i.e., the
ones that are most diverse to each other), whose four legs
have the same state, making the body of the chief move to-
wards four directions or stay still.

Consequently, a good implementation of the diversity as-
sumption should be able to learn subpolicies at level 0 that
can result in the five most useful states (called five use-
ful subpolicies) efficiently and comprehensively. Therefore,
given A1 = 5 (i.e., discovering only five subpolicies), and
the number of steps being 10 millions, the five subpolicies
learned by DEHRL at level 0 are exactly the five useful
subpolicies. Furthermore, SNN (Florensa, Duan, and Abbeel
2017) is a state-of-the-art implementation of the diversity as-
sumption, which is thus tested as a baseline under the same
setting. However, only one of the five useful subpolicies is
discovered by SNN. We then repeat experiments ten times
with different training seeds, and the results are the same.

1https://github.com/YuhangSong/DEHRL



Table 2: The different settings of extrinsic rewards in OverCooked.

reward-level goal-type: any (easy) goal-type: fix (medium) goal-type: random (hard)

1 (easy) Get any ingredient. Get a particular ingredient. Get the first ingredient shown
in the shuffling* to-pick list.

2 (hard) Get 4 ingredients in any order. Get 4 ingredients in a particular order. Get 4 ingredients in order according
to the shuffling* to-pick list.

* The to-pick list is shuffled every episode.

Subpolicy 1Current state Subpolicy 2

Subpolicy 3 Subpolicy 4 Subpolicy 5

useful subpolicies

Figure 4: Subpolicies learned at level 1 in DEHRL.

Furthermore, we loose the restriction by setting A1 = 20
(i.e., discovering 20 subpolicies) and the number of steps
is 20 millions. With no surprise, the five useful subpoli-
cies are always included in the 20 subpolicies discovered by
DEHRL; however, the 20 subpolicies discovered by SNN
still contain only one useful subpolicy.

The superior performance of DEHRL comes from the
proposed new diversity-driven solution, which gives higher
intrinsic rewards to subpolicies that result in more diverse
states; consequently, subpolicies in DEHRL converge to tak-
ing actions that result in most diverse states. And the failure
of SNN may be because the objective of SNN is to maxi-
mize mutual information, so it only guarantees to discover
subpolicies resulting in different states, but these different
states are not guaranteed to be most diverse to each other.
Similar failures are found in other state-of-the-art solutions,
e.g., (Gregor, Rezende, and Wierstra 2016); we thus omit the
analysis of these methods due to space limit.

As for finding useful subpolicies at higher levels, due
to the failures at level 0, none of the state-of-the art solu-
tions can generate useful subpolicies at higher levels. How-
ever, useful subpolices can still be learned by DEHRL at
higher levels. Figure 4 visualizes five subpolicies learned by
DEHRL at level 1, where four of them (marked by a green
dash-line box) result in getting ingredients at four different
corners, which are the useful subpolicies at level 1.

With Extrinsic Rewards. We further compare DEHRL
with three state-of-the-art methods, option-critic (Bacon,
Harb, and Precup 2017), FeUdal (Vezhnevets et al. 2017),
and DIAYN (Eysenbach et al. 2018), when extrinsic rewards

Table 3: Final performance score of DEHRL and baselines
on OverCooked with six different extrinsic reward settings.

reward-level
goal-type

1
any

1
fix

1
random

2
any

2
fix

2
random

DEHRL 1.00 1.00 1.00 0.95 0.93 0.81
Option-critic 1.00 1.00 0.00 0.00 0.00 0.00

DIAYN 1.00 1.00 0.83 0.42 0.10 0.00
FeUdal 1.00 1.00 0.93 0.00 0.00 0.00

PPO 0.98 0.97 0.56 0.00 0.00 0.00
State Novelty 1.00 0.96 0.95 0.00 0.00 0.00

Transition Novelty 1.00 1.00 1.00 0.00 0.00 0.00

are given. As shown in Table 2, six different extrinsic reward
settings with different difficulties are given to OverCooked.

To measure the performance quantitatively, two metrics,
final performance score and learning speed score, based
on reward per episode, are imported from (Schulman et al.
2017). Generally, the higher the reward per episode, the bet-
ter the solution. Specifically, the final performance score av-
erages the reward per episode over the last 100 episodes of
training to measure the performance at final stages; while
the learning speed score averages the extrinsic reward per
episode over the entire training period to quantify the learn-
ing efficiency.

Table 3 show results of the final performance scores. As
shown in Table 3, DEHRL can solve the problems in all six
settings. However, option-critic only solves the two easier
ones; the failure of option-critic is because the extrinsic re-
ward gets more sparse in the last four harder cases. In ad-
dition, FeUdal fails when it is extended to 3 levels, because
its key idea “transition policy gradient” does not work well
for multi-level structures, making it hard to converge for
reward-levels = 2. Similarly, DIAYN also fails when the
reward-levels = 2, showing that only achieving diversity
over primitive actions is not enough. Consequently, we state
that DEHRL can also achieve better performances than the
state-of-the-art baselines when extrinsic rewards are given.

Solving the Sparse Extrinsic Reward Problem
Then, we further compare DEHRL with two state-of-the-art
methods, state novelty (Şimşek and Barto 2004) and transi-
tion novelty (Pathak et al. 2017), towards improving explo-
ration. In addition, as our framework is based on the PPO
algorithm (Schulman et al. 2017), we include PPO as a base-
line as well. The performances based on the final perfor-
mance scores are also shown in Table 3. The results in Ta-
ble 3 show that, these three baselines are all able to solve the
task in the first three settings but all fail in the last three set-
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tings. This thus demonstrates that DEHRL can resolve the
sparse extrinsic reward problem more effectively.

Finally, Figure 5 shows the learning efficiency in the
learning speed score. We note that although DEHRL is much
more complicated than the baselines, it still maintains very
good learning efficiency in easy tasks: its learning speed
scores are very close to the best of the baselines in the
first two easier tasks. Furthermore, the learning efficiency
of DEHRL greatly outperforms all baselines in the harder
tasks. This asserts that, besides effectiveness, DEHRL also
achieves superior learning efficiency. Also, efficiency mea-
sured by wall-clock time can be found in (Song et al. 2018a).

Meta HRL
HRL has recently shown a promising ability to learn meta-
subpolicies to better facilitate adaptive behaviors for new
problems (Solway et al. 2014; Frans et al. 2018). We thus
further compare DEHRL with the state-of-the-art frame-
work, MLSH (Frans et al. 2018), to investigate its perfor-
mance in meta learning.

We first set reward-level=1 and goal-type=random in
OverCooked. The episode extrinsic rewards of both DEHRL
and MLSH are plotted in Figure 6 (upper part), which al-
ways drop when the goal is changed, because the top-level

2 
le

ve
ls

4 
le

ve
ls

6 
le

ve
ls

R
an

do
m

D
   

   
E 

   
  H

   
   

R
   

   
L

(11 / 5 / 16)

(Valid Build / Valid Break / Valid Operation = Valid Build + Valid Break)

(21 / 10 / 36) (4 / 12 / 16) (7 / 1 / 8)

(11 / 5 / 16) (21 / 10 / 36) (4 / 12 / 16) (7 / 1 / 8)

(8 / 102 / 110) (10 / 98 / 108) (2 / 101 / 103) (7 / 90 / 97)

(23 / 137 / 160) (13 / 123 / 136) (4 / 102 / 106) (9 / 132 / 141)

Figure 7: Worlds built by playing Minecraft without extrin-
stic reward.

hierarchies of both methods are re-initialized. Obviously, the
increase speeds of the episode extrinsic rewards after each
reset can measure the performances of methods in facilitat-
ing adaptive behaviors for a new goal (i.e., learning meta-
subpolicies). Consequently, we find that DEHRL and MLSH
have a similar meta-learning performance under this setting.

Then, we repeat the above experiment with reward-
level=2, and the results are shown in Figure 6 (lower part).
We find that DEHRL achieves a better meta-learning than
MLSH in this setting. This is because DEHRL can learn
the subpolicies at level 1 to fetch four different ingredients,
while MLSH can only learn subpolicies to move towards
four different directions. Obviously, subpolicies learned at
level 1 are better intertask-transferable, which make DEHRL
resolve the new goal more easily and quickly than MLSH.

Application of DEHRL in Minecraft
To show the portability of DEHRL, we further apply
DEHRL in a popular video game called Minecraft, where
the agent has much freedom to act and build, and it has
a 1st-person view via raw pixel input. At the beginning of
each episode, the world is empty except one layer of GRASS
blocks that can be broken. We allow the agent to play 1000
steps in each episode; then the world is reset. At each step,
ten actions are available: moving towards four directions, ro-
tating the view towards four directions, break/build a block
and jump. More detailed settings and visualizations are in
(Song et al. 2018a).

Since the typical use of DEHRL is based on the intrinsic
reward only, the existing work (Tessler et al. 2017) that re-
quires human-designed extrinsic reward signals to train sub-
policies is not appropriate to be used as the baseline. Conse-
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Figure 8: Predicted intrinsic reward.

quently, we first construct three DEHRL models with three
different numbers of levels, and then compare their perfor-
mances in Minecraft to a framework with a random policy.
Figure 7 shows the building results, where we measure the
performance by world complexity. As shown in Figure 7, ac-
cording to our intuitive feeling, DEHRL models obviously
build more complex worlds than the random policy. Further-
more, with the increase of the number of levels, DEHRL
tends to build more complex worlds.

Then, we further use a metric, Valid Operations, to quan-
tify the complexity of the worlds, which is defined as:

V alid Operations = V alid Breaks+ V alid Builds,

where Valid Builds is the number of blocks that have been
built and not broken at the end of an episode; Valid Breaks
is the number of blocks that are originally in the world that
have been broken. Consequently, blocks that are built but
broken later will not be counted into Valid Build or Valid
Break. As in Figure 7, the quantitative results are consis-
tent with our previous intuitive feelings. Here, although the
diversity objective is defined under a 1st-person view, the
diversity score is measured under a 3rd-person view; it is to
follow an intuition that although human players have a 1st-
person view in Minecraft, their underlying intrinsic rewards
motivate them to build complex 3rd-person view structures.

Finally, as the predicted intrinsic reward (b̂lt) is an in-
dication of the diversity of current subpolicies, we plot in
Figure 8 the averaged b̂lt over all levels and visualize the
world built by DEHRL at different points to illustrate rela-
tionship between b̂lt and the built world. Minecraft with spe-
cific goals has also been investigated and included in (Song
et al. 2018a).

Related Work
Discovering diverse subpolicies in HRL. The diversity as-
sumption is prevailing in the recent works of option discov-
ery. HiREPS (Daniel et al. 2016) is a popular approach, but
it works in a top-down fashion. SNN (Florensa, Duan, and
Abbeel 2017) is designed to handle sparse extrinsic reward
tasks, which achieves this diversity assumption explicitly by

information-maximizing statistics. Besides, it is promising
to apply SNN in HRL of multiple levels. However, SNN suf-
fers from various failures when the possible future states are
enormous, making it impractical on domains with a large ac-
tion space and unable to further learn higher-level subpoli-
cies. Similar failure cases are observed in (Gregor, Rezende,
and Wierstra 2016).
Extensible HRL. Recently, there has been some attempts in
increasing the levels of HRL. Such works include MAXQ
(Dietterich 2000), which requires completely searching the
subtree of each subtask, leading to high computational costs.
In contrast, AMDP (Gopalan et al. 2017) explores only
the relevant branches. However, AMDP concentrates on the
planning problem. Deeper levels are also supported in (Sil-
ver and Ciosek 2012), but its scalability is not clear. DDO
(Fox et al. 2017) and DDCO (Krishnan et al. 2017) dis-
cover higher-level subpolicies from demonstration trajecto-
ries. However, our work focuses on learning those purely
end-to-end without human-designed extrinsic reward. Other
works (Rasmussen, Voelker, and Eliasmith 2017; Song et
al. 2018b) also involve a modular structure that supports
deeper-level HRL. However, there is no guarantee or veri-
fication on whether the structure can learn useful or diverse
subpolicies at different temporal scales.
Meta HRL. Neuroscience research (Solway et al. 2014) pro-
poses that the optimal hierarchy is the one that best facili-
tates an adaptive behavior in the face of new problems. Its
idea is accomplished with a verified scalability in MLSH
(Frans et al. 2018), where meta HRL is proposed. However,
MLSH keeps reinitializing the policy at the top level, once
the environment resets the goal. This brings several draw-
backs, such as requiring auxiliary information from the en-
vironment about when the goal has been changed. In con-
trast, our method does not introduce such a restriction. Re-
gardless of the difference, we compare with MLSH in our
experiments under the settings of MLSH, where auxiliary
information on goal resetting is provided. As such, the meta
HRL ability of our approach is investigated.
Improved exploration with predictive models. Since we
introduce the transition model to generate intrinsic rewards,
our method is also related to RL improvements with predic-
tive models, typically introducing sample models (Fu, Co-
Reyes, and Levine 2017), generative models (Song et al.
2017), or deterministic models (Pathak et al. 2017) as transi-
tion models to predict future states. However, the transition
model in our DEHRL is introduced to encourage developing
diverse subpolicies, while those in the above works are intro-
duced to improve the exploration. Our method is compared
with the above state novelty (Şimşek and Barto 2004) and
transition novelty (Pathak et al. 2017) in our experiments.

Summary and Outlook
We have proposed DEHRL towards building extensible
HRL that learns useful subpolicies over multiple levels
effectively and efficiently. One interesting future research
work is to develop algorithms that generate or dynamically
adjust the settings of T l and Al. Furthermore, measuring the
distance between states is another future research direction,



where better representations of states may lead to improve-
ments. Finally, DEHRL may be applied to visual tasks (Xu
et al. 2018b) to achieve promising solution with diverse rep-
resentations and mixed reward functions.
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