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A B S T R A C T

Semi-supervised learning has a great potential in medical image segmentation tasks with a few labeled data,
but most of them only consider single-modal data. The excellent characteristics of multi-modal data can
improve the performance of semi-supervised segmentation for each image modality. However, a shortcoming
for most existing multi-modal solutions is that as the corresponding processing models of the multi-modal
data are highly coupled, multi-modal data are required not only in the training but also in the inference
stages, which thus limits its usage in clinical practice. Consequently, we propose a semi-supervised contrastive
mutual learning (Semi-CML) segmentation framework, where a novel area-similarity contrastive (ASC) loss
leverages the cross-modal information and prediction consistency between different modalities to conduct
contrastive mutual learning. Although Semi-CML can improve the segmentation performance of both modalities
simultaneously, there is a performance gap between two modalities, i.e., there exists a modality whose
segmentation performance is usually better than that of the other. Therefore, we further develop a soft pseudo-
label re-learning (PReL) scheme to remedy this gap. We conducted experiments on two public multi-modal
datasets. The results show that Semi-CML with PReL greatly outperforms the state-of-the-art semi-supervised
segmentation methods and achieves a similar (and sometimes even better) performance as fully supervised
segmentation methods with 100% labeled data, while reducing the cost of data annotation by 90%. We also
conducted ablation studies to evaluate the effectiveness of the ASC loss and the PReL module.
1. Introduction

In recent years, deep learning techniques have achieved some great
successes in medical image analysis, where supervised learning is the
most commonly adopted solution, and a large amount of manually
annotated data are usually needed (Esteva et al., 2017; Krizhevsky
et al., 2012; Ronneberger et al., 2015). However, annotating medical
images is a highly professional task that can only be done by radiol-
ogists with extensive clinical experience. Due to the limited number,
time, and annotating efficiency of professional radiologists, obtaining
a large medical image dataset with accurate annotations is usually very
difficult, which thus limits the use of supervised learning in real-world
clinical practice. A classical solution to this problem is semi-supervised
learning, where a few labeled data and numerous unlabeled data are
used together for the learning of deep models to eliminate the need of
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massive expensive labeled data while maintaining a satisfactory perfor-
mance (Arazo et al., 2020; Lee et al., 2013; Mittal et al., 2019; Sohn
et al., 2020; Xie et al., 2019). However, the existing semi-supervised
methods are mostly based on single-modal data, and lack of capabilities
to utilize fruitful information in multi-modal medical images.

Specifically, it is known that some medical imaging methods can
generate medical images with multiple modalities, e.g., magnetic reso-
nance imaging (MRI) can generate images with four modalities (i.e., T1,
T1CE, T2, and FLAIR), and positron emission tomography (PET) can be
done together with computerized tomography (CT) to obtain both PET
and CT scans. At present, many different fully-supervised multi-modal
fusion classification and segmentation networks have been proposed to
make full use of multi-modal data (Liu et al., 2021; Andrearczyk et al.,
2020; Kumar et al., 2019; Dolz et al., 2018; Hu et al., 2020; Mo et al.,
2020; Tseng et al., 2017; Zhou et al., 2019a; Zhao et al., 2021; Tang
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et al., 2022). However, these methods cannot use a large amount of un-
labeled multi-modal data, which limits their performances. Therefore,
some studies tend to use semi-supervised learning to utilize unlabeled
multi-modal data, but these methods mainly focus on multi-modal
classification and clustering tasks (Yang et al., 2018; Sun et al., 2020;
Du et al., 2021). To our knowledge, there are only few works (Mon-
dal et al., 2018; Chartsias et al., 2020) aiming at multi-modal semi-
supervised medical image segmentation. However, these multi-modal
segmentation methods have a common drawback regardless of whether
they use unlabeled multi-modal data. The drawback is that the fusion
process of two modalities usually requires weight sharing or complex
feature concatenation (i.e., high coupling) in the training stage, which
leads to the need for both modalities to be fed simultaneously in the
inference stage. This greatly limits the application of these models in
clinical practice, because taking medical images of multiple modalities
is very time-consuming and money-costly and usually only a single
modality of medical images is obtained for the imaging diagnosis in
practice. So the need for a multi-modal semi-supervised model that uses
only one modality in the inference stage for accurate medical image
segmentation is compelling.

In this paper, we propose to take advantage of large amounts
of unlabeled multi-modal data to improve the segmentation perfor-
mance of each modality by allowing networks to in-depth learn from
different modalities, where a novel contrastive loss is proposed to
minimize the prediction differences of two image modalities, and thus
get multiple single-modal inference networks. We call this framework
Semi-supervised Contrastive Mutual Learning (Semi-CML). Specifically,
we first perform the mean square error (MSE) consistency loss on the
prediction maps of different modalities to achieve a simple mutual
learning between different modalities. However, we find that the MSE
loss is not good enough, because (i) it does not consider the area
context information within the images, which is usually important for
medical image segmentation tasks, and (ii) it only aims to minimize the
differences between positive sample pairs but is not able to maximize
the differences between the negative samples. Therefore, we propose
to utilize a contrastive loss to resolve this problem. Although the
state-of-the-art contrastive loss, Noise Contrastive Estimation (NCE)
loss (Chaitanya et al., 2020; Chen et al., 2020; He et al., 2020), can
additionally maximize the differences between the negative samples,
the area context information is still not considered in NCE, which
thus limits its performance. Therefore, we propose an improved con-
trastive loss, named Area-Similarity Contrastive (ASC) loss. Differently
from conventional contrastive learning methods, ASC has the following
two advantages: (i) ASC creatively incorporates Dice similarity into
the contrastive learning, making it possible to take into account the
area context information in learning, and (ii) ASC can bypass the
projection head and directly perform area-based contrastive learning
on the predicted segmentation map without ground-truth, thus directly
and effectively improving the performance of semi-supervised semantic
segmentation. In the process of mutual learning of multi-modal images,
the ASC loss can maximize the lower bound of the mutual informa-
tion between the predicted segmentation maps of different modalities,
which leads to a higher prediction consistency. Consequently, the loss
makes networks deeply learn the potential complementary information
between different image modalities, which plays a vital role in the
mutual learning between the two modalities.

We note that there exist performance gaps between different modal-
ities. Although Semi-CML can alleviate this problem, there is always
a modality whose performance is relatively low. Therefore, to fur-
ther improve the segmentation ability of the low-performance image
modality model, we develop a soft pseudo-label re-learning (PReL)
cheme by using the prediction of the unlabeled high-performance
mage modality. Specifically, the model of high-performance modality
s used as a teacher model with higher confidence through an improved
xponential moving average self-ensembling technology, called Best-
2

odel Moving Average (BMA). We use the BMA update strategy to
get a more reliable teacher model, which is called Best-model Moving
Average self-ensembling teacher model (BMA Teacher). Then, under the
re-learning epoch, we use the BMA teacher model with Monte-Carlo
dropout sampling to generate a soft pseudo-label with higher relia-
bility and precision for the training of the low-performance modality.
Consequently, the semi-supervised contrastive mutual learning frame-
work with a soft pseudo-label re-learning using BMA Teacher is called
Semi-CML with PReL. The contributions of this work are briefly as
follows:

• We identify a common shortcoming of multi-modal segmentation
methods: they need images of all modalities in the inference
stage, which thus limit their applications in clinical practices.
To alleviate this problem, in this work, we propose a new low-
coupling multi-modal semi-supervised segmentation framework,
Semi-CML with PReL, which can adequately consider potential
correlations and differences between unlabeled multi-modal data
in the training stage, and uses only one modality in the inference
stage for accurate medical image segmentation.

• We first propose a novel ASC loss to better utilize the area context
information in contrastive learning, which is proved to achieve
much better segmentation performances in semi-supervised medi-
cal image segmentation tasks. In order to remedy the performance
gaps between different modalities, we further propose a soft
pseudo-label re-learning (PReL) scheme which, based on best-
model moving average (BMA) method, utilizes the model of
high-performance modality as a teacher model to generate high-
precision soft pseudo-labels for the re-learning of the model of
low-performance modality.

• We conducted extensive experiments on two public multi-modal
medical image segmentation datasets. The results show that (i)
Semi-CML with PReL achieves a similar (and sometimes even
better) performance as fully supervised segmentation solutions
with 100% labeled data and greatly outperforms the state-of-the-
art semi-supervised segmentation methods, and (ii) the proposed
ASC loss and PReL scheme are both effective and essential for our
model to achieve superior performances.

2. Related work

2.1. Semi-supervised segmentation

In medical image segmentation tasks, there usually exists only
limited number of annotation data. To solve this problem, many re-
searchers have focused on the semi-supervised medical image seg-
mentation methods, which can be divided into self-training meth-
ods (Zhu et al., 2020; Zou et al., 2018; Bai et al., 2017), adversarial
training methods (Hung et al., 2018; Souly et al., 2017; Li et al.,
2020a), co-training methods (Zhou et al., 2019b; Peng et al., 2020a;
Xia et al., 2020; Wang et al., 2021a), and consistency regularization
methods (Bortsova et al., 2019; Hang et al., 2020; Li et al., 2020c;
Luo et al., 2021; Wang et al., 2020; Yu et al., 2019). Zhu et al. (2020)
propose to train a teacher model using labeled data and infer pseudo-
labels for unlabeled data, then mix the pseudo-labeled and real-labeled
data into a new student model to perform semi-supervised semantic
segmentation. Li et al. (2020a) propose a shape-aware semi-supervised
segmentation method, which uses generative adversarial learning to
perform geometric shape constraints on the output maps.

Currently, co-training based and consistency regularization based
methods are of great significance and have been widely used in semi-
supervised medical image segmentation. Co-training based methods
focus on co-training with different views of the 3D volume. For ex-
ample, Zhou et al. (2019b) propose deep multi-planar co-training,
where three planes of the 3D volume are trained separately, and
more reliable pseudo-labels are obtained by fusing predictions from

different planes. Xia et al. (2020) propose a multi-view co-training
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method, which utilizes multi-view information from unlabeled data
to jointly train different views of the 3D volume to improve semi-
supervised segmentation performances. Then, Wang et al. (2021a)
propose to use self-paced and self-consistent learning strategies for
the co-training between different networks in semi-supervised image
segmentation tasks. Consistency regularization methods focus on the
consistency of model predictions under different perturbations. For
example, Luo et al. (2021) propose to add a dual-task consistency
regularization at the output of the network for model training. Another
method, the mean teacher model, has proved to be very effective in
semi-supervised learning (Tarvainen and Valpola, 2017). Cui et al.
(2019) propose to encourage consistent segmentation predictions on
the student model and the teacher model for the same input under
different disturbances. Yu et al. (2019) propose to add uncertainty
estimation in the teacher model to enable the teacher model to generate
certain predictions and then carry out consistency training with the
student model. Co-training methods usually need to train multiple
view models and utilize multi-view prediction consistency to obtain
progressive performance of semi-supervised segmentation, however,
joint training of multi-view models also increases the training and infer-
ence costs of the algorithm. Consistency regularization methods usually
only need to design a reasonable consistency regularization scheme
to obtain satisfactory semi-supervised segmentation performance. In
our work, we mainly use the multi-modal prediction consistency to
improve the model performance, so directly using the consistency
regularization method will be more suitable, while the co-training
method will introduce more models and cause the model complexity
to be too high. Furthermore, different from the previous methods, our
proposed method is based on the consistency prediction of multi-modal
data by using the difference and agreement of different modalities to
overcome the limitation that the above methods cannot directly use
multi-modal information. Therefore, we choose the state-of-the-art co-
training and consistency regularization methods as our baselines to
show the superior performances of our multi-modal based semi-CML.

2.2. Multi-modal semi-supervised medical image analysis

At present, many works have proved that special complementary
information and synergistic information among multi-modal data can
obtain an additional performance boost for image segmentation. Con-
sequently, co-segmentation methods are proposed by researchers to
identify similar foreground regions from multi-modal images. A co-
segmentation model based on Markov random fields (MRFs) is first pro-
posed by Rother et al. (2006); then, many subsequent co-segmentation
methods have been proposed (Daryanto et al., 2017), which can be
roughly divided into unsupervised co-segmentation methods (Li et al.,
2014; Dong et al., 2015; Wang et al., 2016; Meng et al., 2015) and
interactive co-segmentation methods (Batra et al., 2010; Vicente et al.,
2011; Batra et al., 2011; Tao et al., 2015). Furthermore, there also exists
many deep learning based multi-modal fully-supervised segmentation
methods (Zhou et al., 2019a); according to different multi-modal fusion
strategies, multi-modal image segmentation networks can be divided
into input-level fusion networks (Andrearczyk et al., 2020; Hu et al.,
2020), layer-level networks (Kumar et al., 2019; Dolz et al., 2018;
Tseng et al., 2017) and late-fusion networks (Andrearczyk et al., 2020;
Mo et al., 2020; Zhao et al., 2021). However, these studies mainly focus
on designing new information fusion strategies for the multi-modal data
and their models are usually trained by full supervision.

Currently, for multi-modal semi-supervised works, related
researches are mainly focusing on classification or clustering tasks
(Yang et al., 2018; Sun et al., 2020; Du et al., 2021). For example, Sun
et al. (2020) propose to use the total correlation gain maximization
to predict Alzheimer’s disease with multi-modal data. Differently from
these works, we focus on semi-supervised segmentation tasks in medi-
cal images. To our knowledge, there are only few researches targeting
3

at the semi-supervised segmentation tasks of multi-modal data. Mondal
et al. (2018) have proposed a few-shot multi-modal segmentation
method based on generative adversarial learning, which simply uses
multi-modal data with a channel fusion method. Chartsias et al. (2020)
have proposed a DAFNet, which uses incompletely labeled multi-
modal data for image segmentation; this work uses disentanglement,
alignment, and fusion to build a complex network to fuse multi-
modal data to improve the performance of the target modal. However,
these two existing semi-supervised multi-modal methods have the same
disadvantage as other fully supervised multi-modal fusion models: the
networks are highly coupled, which leads to the necessity of using
multi-modal data as inputs simultaneously in the inference stage to
obtain satisfactory final results. Differently, although our work also
focuses on the task of semi-supervised multi-modal segmentation, we
propose a method that uses multi-modal data in the training stage
and generate multiple independent models that can be used to obtain
satisfactory segmentation results in the inference stage using only
single-modal data. To show the superior performances of our method,
the few-shot multi-modal segmentation method and DAFNet are both
used as the baselines in our experiments.

2.3. Contrastive learning

Recently, great progresses have been made in self-supervised learn-
ing based on contrastive losses (Chaitanya et al., 2020; Chen et al.,
2020; He et al., 2020; Khosla et al., 2020; Wang et al., 2021b), and its
performance has gone beyond supervised learning (Chen et al., 2020;
He et al., 2020). A contrastive loss can increase the mutual information
of similar samples by maximizing the similarity of positive samples
and minimizing the similarity of negative samples. For example, Chen
et al. (2020) propose to use data augmentation to get more meaningful
positive and negative samples to achieve the competitive performance
of downstream tasks. Recently, the contrastive loss have been suc-
cessfully applied in medical imaging (Chaitanya et al., 2020; Iwasawa
et al., 2020). Chaitanya et al. (2020) use the structural similarity of
3D medical data to design a global and local contrastive loss. In addi-
tion, contrastive learning is also used in the fully supervised semantic
segmentation task, and a pixel-level contrastive algorithm is proposed
in Wang et al. (2021b). In this paper, we take the contrastive loss as
the instructor of mutual learning of different modalities in the semi-
supervised setting and take the prediction results of two modalities as
a positive sample pair to maximize the mutual learning ability between
different image modalities.

2.4. Narrowing performance gap and EMA-weighted model

We propose the PReL algorithm to narrow the performance differ-
ences between different modalities based on the proposed Semi-CML.
Similarly, domain adaptation (DA) is an existing method that can also
be used to narrow the performance gaps. DA usually uses a generative
adversarial network (GAN) (Radford et al., 2015; Arjovsky et al., 2017)
to make the distributions of the target domain as close as possible to
those of the source domain to narrow the performance gaps. In medical
imaging, there are often multiple modalities of data due to variations
in imaging protocols. To reduce the annotation cost of multi-modal
data, an unsupervised domain adaptation method can be used to utilize
cross-modal data for image segmentation (Kamnitsas et al., 2017; Dou
et al., 2018; Zeng et al., 2021). For example, Dou et al. (2018) propose
a cross-modality domain adaptation method, which designs a domain
adaptation module and a domain critic module to transfer the MRI
segmenter to CT data for narrowing their performance gaps. Comparing
to DA solution, our PReL method has the following three advantages
for the performance gap narrowing: First, PReL is more efficient. It
can use reliable prediction maps for direct re-learning, while DA in-
directly narrows the performance gap by narrowing the distribution
differences. Second, PReL is more flexible. It can perform re-learning
simultaneously on low- and high-performance modalities, whereas the
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Fig. 1. Our semi-supervised contrastive mutual learning (Semi-CML) segmentation framework using multi-modal data. The framework consists of a dual-modal supervised loss,
and cross-modal MSE and ASC unsupervised losses. For the ASC loss, we construct positive sample pairs from the paired cross-modalities data (solid arrow), and construct negative
sample pairs from the unpaired cross-modalities data (dashed arrow) and the unpaired same-modalities data (not shown). According to the built positive and negative sample pairs,
we use Dice similarity to calculate the ASC matrix. Finally, our optimization goal is, by minimizing the ASC loss, to make the positive sample pair (red area) in the matrix closer
(darker color), and push the negative sample pair (brown area) farther (lighter color) in the matrix. The light blue dashed box in the lower-left corner illustrates the process of
using a high-performance model to generate the BMA teacher model in the Semi-CML iteration. The details of the BMA update strategy are shown in Fig. 2.
target domain in DA usually does not get additional learning. Finally,
PReL is more stable and simpler. It only needs to use the training-free
teacher model to perform re-learning, while DA usually needs to train
additional discriminator, which may lead to training instability.

The exponential moving average (EMA) can often be used as an
update method for model weight ensemble, which makes the model
weight smoother and more stable (Laine and Aila, 2017; Tarvainen and
Valpola, 2017; Cui et al., 2019; Yu et al., 2019; Verma et al., 2019).
For example, Tarvainen and Valpola (2017) propose to use EMA to
aggregate the model weights obtained by multiple prior networks into a
single ensemble model. Although EMA method can obtain a more stable
teacher model, the weights of the teacher model are updated in each
mini-batch, making the EMA-weighted model updated when the weight
obtained in some training stage is still poor, and the network cannot
dynamically adjust the update ratio according to the model training
quality. Differently from the previous work, we propose to use the best
model pool (BMP) to decide whether to update the teacher model, and
we use a Best-model Moving Average (BMA) strategy to update the
weights of the teacher model using the best model parameters for PReL.

3. Methodology

3.1. Semi-supervised contrastive mutual learning

Inspired by the potential value of intrinsic correlation in multi-
modal data and contrastive self-supervised learning, and to overcome
the high coupling problem in the multi-modal fusion model, we pro-
pose a novel low-coupling semi-supervised contrastive mutual learning
framework, named Semi-CML, for multi-modal image segmentation, as
shown in Fig. 1. The Semi-CML framework can perform cross-modal
knowledge mutual learning on multi-modal data via low-coupling con-
sistency losses using a large amount of unlabeled data. Concretely, first,
4

we build two U-Nets (Ronneberger et al., 2015) with identical struc-
tures as segmentation network backbones for two different modalities.
Then, two mini-batches of prediction maps in different modalities are
obtained by forward propagation of the two U-Nets, where the labeled
batches of two modalities perform for supervised learning. Second, for
mutual learning between two modalities, the unlabeled batches of two
modalities are fed into the MSE loss for the simple mutual learning
and proposed area-similarity contrastive loss for the in-depth mutual
learning.

3.1.1. Dual-modal supervised learning
Given a dual-modal dataset ′ and ′′, the number of labeled data

is 𝑁 , and the number of unlabeled data is 𝑀 . We define their labeled
and unlabeled datasets ′

𝐿, ′
𝑈 and ′′

𝐿, ′′
𝑈 as follows:

′
𝐿 =

{(

𝑥′𝑖 , 𝑦𝑖
)}𝑁

𝑖=1 ,
′
𝑈 =

{

𝑥′𝑖
}𝑁+𝑀
𝑖=𝑁+1 , (1)

′′
𝐿 =

{

𝑥′′𝑖 , 𝑦𝑖
}𝑁
𝑖=1 , ′′

𝑈 =
{

𝑥′′𝑖
}𝑁+𝑀
𝑖=𝑁+1 , (2)

where 𝑥′𝑖 , 𝑥
′′
𝑖 ∈ R𝐻×𝑊 are different image modalities with the size of

𝐻 × 𝑊 , and 𝑦𝑖 ∈ {0, 1}𝐶×𝐻×𝑊 is the ground-truth with 𝐶 classes.
In particular, the two image modalities 𝑥′𝑖 , 𝑥

′′
𝑖 correspond to the same

ground-truth mask 𝑦𝑖. Our semi-supervised architecture has as input
two different image modalities with the same annotation in a training
stage and gets their prediction results at the output end of the network
at the same time. So, we define segmentation networks 𝐹 (⋅) and 𝐺(⋅)
with the same structure but different parameters for the two modalities
as Model 1 and Model 2, respectively. For the supervised training of two
different models, the predicted masks with annotations of each mini-
batch are taken out to calculate the supervision loss. The supervision
loss consists of the weighted sum of dice loss and binary cross-entropy
loss, which is defined as follows:

 �̂�, 𝑦 = 𝛽 �̂�, 𝑦 + 𝛾 �̂�, 𝑦 , (3)
sup ( ) bce ( ) dice ( )
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where bce is the binary cross-entropy loss, dice is the dice loss (Mil-
letari et al., 2016), and 𝛽 and 𝛾 are the weights of bce and dice,
respectively. Finally, we obtain the two supervised loss functions gen-
erated by different modalities, and their corresponding segmentation
networks are optimized at the same time:

min
𝐹 ,𝐺

Total
sup (𝐹 ,𝐺) =

E𝑥′ ,𝑥′′ ,𝑦

[

′
sup

(

𝐹
(

𝑥′
)

, 𝑦
)

+ ′′
sup

(

𝐺
(

𝑥′′
)

, 𝑦
)

]

, (4)

where ′
sup and ′′

sup optimize the parameters of segmentation net-
orks 𝐹 (⋅) and 𝐺(⋅), respectively, to learn the modality-specific infor-
ation of each modality.

.1.2. Cross-modal knowledge contrastive mutual learning
Consistency regularization has a great potential in semi-supervised

earning. Previous works have proposed a variety of consistency regu-
arization methods (Li et al., 2020c; Peng et al., 2020b; Tarvainen and
alpola, 2017; Xie et al., 2019). Differently from previous methods, in
ur proposed method, the consistency regularization term is designed
ased on the correlation and difference information between different
odalities. The consistency of their predictions is used as the driving

orce of semi-supervised cross-modal knowledge mutual learning. This
llows two different models to learn from each other by building a
ridge between different modalities for information complementarity.
ased on this, we design two cross-modal consistency loss functions.
ne is the MSE consistency loss for the simple mutual learning, and

he other is a contrastive loss based on area similarity for the in-depth
utual learning. The cross-modal MSE consistency loss is defined as

ollows:

in
𝐹 ,𝐺

mse (𝐹 ,𝐺) = E𝑥′ ,𝑥′′

[

‖

‖

‖

𝐹
(

𝑥′
)

− 𝐺
(

𝑥′′
)

‖

‖

‖

2
]

, (5)

which can achieve the simple mutual learning by minimizing the
difference of the prediction results between two modalities.

However, the MSE loss is not good enough on the increase of
the consistency lower bound of the two modalities mutual informa-
tion (Tschannen et al., 2020), thereby leading to performance limita-
tions in cross-modal complementary knowledge learning. Specifically,
first, the MSE usually only constructs a distance error between paired
predictions. Especially in the cross-modal prediction consistency, only
the prediction similarity of paired modalities can be paid attention
to, but the prediction dissimilarity for unpaired cross-modal data and
unpaired same-modal data cannot be paid attention to. This causes the
network to easily fall into over-fitting, because it only focuses on the
easy-to-learn paired modal similarity, and at the same time causes the
network to fail to learn more in-depth unpaired cross-modal and same-
modal complementary information. Second, the MSE only considers the
Euclidean distance metric between each pixel in two predictions and
cannot pay attention to the edge and area context information of the
prediction target. This is a disadvantage for image segmentation that
needs to focus on the edge and region of the prediction target.

Therefore, we also design a novel area-similarity contrastive (ASC)
loss to overcome these problems. Specifically, inspired by the promising
self-supervised learning based on a contrastive loss (Chaitanya et al.,
2020; Chen et al., 2020), we propose to use a contrastive learning
algorithm based on positive and negative sample pairs to learn the
cooperative information in the paired cross-modal data and the comple-
mentary information in the unpaired cross-modal data and the unpaired
same-modal data. On the one hand, this cross-modal mutual learning
algorithm based on contrastive learning can learn the consistency
information between paired modalities by maximizing the prediction
similarity between paired different modalities. On the other hand, we
can learn the difference information between unpaired modalities by
minimizing the similarity between negative sample pairs (unpaired
cross-modal data and unpaired same-modal data). Therefore, we can
5

not only force the network to focus on the prediction similarity of
paired modalities, but indirectly focus on the prediction dissimilarity in
unpaired cross-modal data and unpaired same-modal data by construct-
ing negative sample learning, thereby alleviating the network falling
into overfitting.

However, current contrastive learning usually uses image embed-
ding vectors and the cosine similarity for representation learning (Chai-
tanya et al., 2020; Chen et al., 2020; You et al., 2021), which is not
suitable for the segmentation task that requires dense pixel-wise classi-
fication. Specifically, first, if the segmentation task uses the embedding
vector obtained by the additional projection head for the contrastive
representation learning, it cannot directly learn the semantic informa-
tion of the segmentation target. Second, although the cosine similarity
focuses not only on the Euclidean distance between corresponding
pixels like MSE, the cosine similarity cannot directly focus on the edge
and area context information of the segmentation target. Therefore,
our proposed ASC loss does not use a projection head but directly
performs the contrastive learning on predicted segmentation maps to
learn pixel-level information. At the same time, we use Dice similarity
instead of cosine similarity as the similarity measurement function
to pay attention to the area context information of the segmentation
target.

Below, we give a detailed description of the proposed ASC loss. In
the process of constructing positive and negative sample pairs, we treat
the different classification regions of each sample as the same object
(usually there are only two to three classes in medical image segmen-
tation tasks), and construct positive and negative sample pairs between
different modalities and different samples to focus on cross-modal and
same-modal collaboration information and difference information. We
have also noticed that the lesion area and location of the same disease
in the medical image segmentation task may be a little similar between
adjacent slices in the same patient scan. Therefore, we only randomly
sample a small batch size from a large amount of unlabeled data to
perform the contrastive learning, which can almost avoid the possibility
of adjacent slices appearing in negative sample pairs. Specifically, we
randomly selected 𝐾 unlabeled samples as a mini-batch from two
different image modalities, thus generating 2𝐾 data points as the input
f contrastive loss. Among them, two image modalities corresponding
o the same ground truth are taken as positive sample pairs (paired
odalities). Now, 𝐾 positive sample pairs are generated, defined as set
+. For each positive pair, the remaining 2(𝐾−1) data in the mini-batch
re taken as the negative sample set, defined as 𝛤−, which includes
rediction results of different modalities and different slices (unpaired
ross-modal data and unpaired same-modal data). Therefore, in a mini-
atch of size K, the positive and negative sample sets are described as:

+ =
{(

𝐹
(

𝑥′𝑖
)

, 𝐺
(

𝑥′′𝑖
))}𝐾

𝑖=1 , (6)

𝛤− =
{

𝐹
(

𝑥′𝑗
)}𝐾−1

𝑗≠𝑖
∪
{

𝐺
(

𝑥′′𝑗
)}𝐾−1

𝑗≠𝑖
. (7)

Next, we give the specific formula of the proposed ASC loss. First,
in order to measure the area context similarity between positive and
negative sample pairs, we use Dice coefficient similarity as a similarity
measurement function, which is defined as follows:

𝑆dice
(

𝑦1, 𝑦2
)

=
2 ×

∑

̇𝑦1∈𝑦1 ,
̇𝑦2∈𝑦2

𝑦1 𝑦2
∑

𝑞1∈𝑦1 ,
𝑞2∈𝑦2

(

𝑦1 + 𝑦2
) , (8)

where 𝑦1 and 𝑦2 denote the values of each pixel of two predictions 𝑦1
and 𝑦2, respectively. Second, we define our ASC loss for a positive pair
as follows:

𝑙asc (�̂�, �̃�) = − log
exp

(

𝑆dice (�̂�, �̃�)
)

exp
(

𝑆dice (�̂�, �̃�)
)

+
∑

ℎ∈𝛤− exp
(

𝑆dice (�̂�, ℎ)
) , (9)

where (�̂�, �̃�) is a positive sample pair in 𝛤+, and ℎ is a negative sample
corresponding to �̂� in 𝛤−. Then, the total ASC loss for a minibatch of
K unlabeled images is as follows:

min (𝐹 ,𝐺) = E ′ ′′

𝐹 ,𝐺 ASC 𝑥 ,𝑥
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Fig. 2. Our proposed soft pseudo-label re-learning algorithm using the BMA teacher model based on the Semi-CML framework (Semi-CML with PReL). The left box shows the
detailed workflow of using the BMA update strategy to generate a teacher model, where the generation of the BMA teacher model is only run in Stage 1 (before the 𝐿1th epoch).
The box on the right shows the pipeline that uses the previously generated BMA teacher model to perform soft pseudo-label re-learning for the low and high performance modality,
where the re-learning supervision is run in Stage 2 (after the 𝐿1th epoch).
[

1
2𝐾

∑

(𝐹 ′ ,𝐺′′)∈𝛤+

(

𝑙asc
(

𝐹 ′, 𝐺′′) + 𝑙asc
(

𝐺′′, 𝐹 ′))
]

, (10)

where 𝐹 ′ = 𝐹
(

𝑥′
)

and 𝐺′′ = 𝐺
(

𝑥′′
)

. Each sample in a positive sample
pair has to calculate the similarity with the samples in the negative
sample set, so a positive sample pair needs to calculate 𝑙𝑎𝑠𝑐 twice.

In addition, to balance the MSE loss and the ASC loss, the weight
coefficients 𝑤1 and 𝑤2 are added, where 𝑤1 is a ramp-up function to
adjust the weight value according to the epoch number, just like Tar-
vainen and Valpola (2017), and 𝑤2 is a scalar. Finally, the overall loss
of the Semi-CML framework for the training of Stage 1 is defined as
follows:

min
𝐹 ,𝐺

CML(𝐹 ,𝐺) = Total
sup +𝑤1mse +𝑤2ASC. (11)

3.2. Soft pseudo-label re-learning using the BMA teacher model

Although the above methods greatly improve the segmentation
performance of both modalities, our experiments show that there exists
a gap between the performance of two modalities, i.e., there is a
modality whose segmentation performance is usually better than that
of the other. To further improve the segmentation precision of the
low-performance modality, we design a soft pseudo-label re-learning
strategy by using the model with high-performance modality, as shown
in Fig. 2 and Algorithm 1. To be specific, motivated by EMA-weighted
models (Tarvainen and Valpola, 2017) and dropout as a Bayesian
approximation (Gal and Ghahramani, 2016), we first design a novel
best-model moving average (BMA) self-ensembling technology to gen-
erate an optimal and reliable teacher model during Stage 1 (i.e., before
a certain epoch when Semi-CML reaches convergence, 𝐿1). The teacher
model is called the best-model moving average self-ensembling teacher
model (BMA Teacher). Second, in Stage 2 (after the 𝐿1th epoch), we use
the BMA teacher model and Monte-Carlo dropout sampling to generate
soft pseudo-labels with higher reliability. Then, re-learning is per-
formed for the low-performance modality using the soft pseudo-labels.
In addition, the teacher model is also helpful for the high-performance
6

modality. Therefore, the re-learning process is also executed for the
high-performance model but starts after the warm-up epoch (𝐿2, lags
the 𝐿1th epoch). We assume that Model 1 and Model 2 are the low and
high performance models.

3.2.1. Best-model moving average teacher model
The student–teacher model is widely used in semi-supervised learn-

ing algorithms, where the teacher model usually uses the exponential
moving average (EMA) to update network parameters (Tarvainen and
Valpola, 2017; Yu et al., 2019). This method usually updates the model
weights in every epoch or minibatch (though the model performance
is poor), which results in a decrease in the performance of the teacher
model. This is because a deep model usually has performance shocks
due to unstable training (as can be clearly seen from the 5th to 40th
epoch in Fig. 7(b)), where the model weights that are obtained when
the model falls into a low-performance state may be unreliable. At
this time, if the weights of this model are updated to the teacher
model, the reliability of the teacher model will be reduced. Therefore,
to integrate only high-quality model weights, we propose a novel Best-
model Moving Average (BMA) self-ensembling method to selectively
update the weights of the teacher model, defined as 𝑇 (𝜃). Specifically,
we decide whether to update the teacher model based on the training or
validation accuracy of each epoch, so that only the optimal (compared
to the model performance of all previous epochs) or sub-optimal high-
performance model weights are selected to update the teacher model
weight. For ensuring that the optimal or suboptimal model weights are
updated to the teacher model, we design a Best Model Pool (BMP),
defined as set Rpool, to dynamically store 𝑝 (BMP Number, e.g., 6)
optimal or suboptimal accuracy values of different epochs.

Specifically, for Stage 1, the BMA teacher model is updated after 𝑚
epochs (e.g., 10), because better model weights are usually not available
in the first 𝑚 epochs, and all updates are only completed in Stage
1 (i.e., before epoch 𝐿1). First, in 𝑝 epochs after the 𝑚th epoch, we
initialize the BMP with a capacity of 𝑝 using the accuracy of these 𝑝
epochs. At the same time, in the (𝑚 + 𝑝 + 1)th epoch, the weights of
the high-performance model are directly used as the initial weights of
the teacher model. Then, for each epoch between (𝑚 + 𝑝 + 1) and 𝐿
1
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Algorithm 1 Soft Pseudo-Label Re-Learning algorithm.
1: Input: Batch of unlabeled examples of different modalities ′

𝑈 =
(

𝑥′𝑖 ; 𝑖 ∈ (1,… , 𝑁 +𝑀)
)

, ′′
𝑈 =

(

𝑥′′𝑖 ; 𝑖 ∈ (1,… , 𝑁 +𝑀)
)

, max epoch
𝑡max, BMP number 𝑝, start epoch of BMA update 𝑚, start epoch of
PReL for Model 1 𝐿1, start epoch of PReL for Model 2 𝐿2. We assume
that Model 2 is a high-performance model.

2: for 𝑡 = 0 to 𝑡max do
3: if 𝑡 < 𝐿1 then
4: Training for Semi-CML using Eq. (11)
5: Calculate 𝐴𝑐𝑐𝑡 using the high-performance model and get

weights 𝜃′′𝑡 from the high-performance model {Make two
preparations for updating of BMA Teacher.}

6: if 𝑚 < 𝑡 <= (𝑚 + 𝑝) then
7: 𝐴𝑐𝑐𝑡 ⇒ Rpool {Initialize the BMA Pool using 𝐴𝑐𝑐𝑡.}
8: else if 𝑡 = (𝑚 + 𝑝 + 1) then
9: 𝜃𝑡 = 𝛼𝜃𝑡−1 + (1 − 𝛼)𝜃′′𝑡 , 𝛼 = 0.99 {Initialize the BMA Teacher

using weights 𝜃𝑡.}
10: else if 𝑡 > (𝑚 + 𝑝 + 1) and 𝐴𝑐𝑐𝑡 > min(Rpool ) then
11: 𝐴𝑐𝑐𝑡 ⇒ Rpool {Continually update the BMA Pool.}
12: 𝜃𝑡 = 𝛼𝜃𝑡−1 + (1 − 𝛼)𝜃′′𝑡 , 𝛼 is equal to Eq. (12) {Continually

update the BMA Teacher using weights 𝜃𝑡.}
13: end if
14: Get BMA Teacher (𝑇 ).
15: else
16: 𝑃𝑠 = 1

𝐷
∑𝐷

𝑖=1 𝑇
(

𝑥′′ + 𝜉𝑖
)

{Generating pseudo-labels using the
BMA Teacher.}

17: Calculate loss ′
ReL using Eq. (16) {Training Model 1 using the

pseudo-labels 𝑃𝑠}
8: if 𝐿2 < 𝑡 < 𝑡max then

19: Calculate loss ′′
ReL using Eq. (17) {Training Model 2 using

the pseudo-labels 𝑃𝑠 after warm-up epoch.}
20: end if
21: end if
22: end for

epochs, we need to perform two steps after meeting certain conditions.
For Step 1, we need to continuously update the BMP to ensure that
it contains the optimal and sub-optimal accuracy values. For Step 2,

e use the function of the best-model moving average to continuously
pdate the weights of the teacher model. Concretely, we compare the
ccuracy of the current epoch with the minimum accuracy in the BMP
o decide whether to update the BMP and the teacher model. If it is
reater than the minimum value, we update the minimum value in
he pool with the current accuracy to ensure that the accuracy value
n the pool is the top 𝑝 best accuracy in the previous 𝐿1 epochs. At
he same time, we use the BMA update function to update the weights
f the teacher model. The weight update ratio of the teacher model
hanges dynamically according to the increase of accuracy, which can
e defined as follows:

= min
(

1 −
𝐴𝑐𝑐𝑡 − 𝐴𝑐𝑐𝑚𝑖𝑛

𝐴𝑐𝑐𝑡
, 𝛼0

)

, (12)

here 𝐴𝑐𝑐𝑡 is the accuracy at the training epoch 𝑡, 𝐴𝑐𝑐min = min
(

Rpool
)

,
nd 𝛼0 = 0.99. Finally, all the update procedures of the BMP and the
MA teacher are described as follows:

𝐴𝑐𝑐𝑡 ⇒ Rpool if 𝐴𝑐𝑐𝑡 > 𝐴𝑐𝑐𝑚𝑖𝑛
𝜃𝑡 = 𝛼𝜃𝑡−1 + (1 − 𝛼)𝜃′′𝑡 if 𝐴𝑐𝑐𝑡 > 𝐴𝑐𝑐𝑚𝑖𝑛,

(13)

where 𝜃𝑡 and 𝜃′′𝑡 are the weights of the teacher model and the high-
performance model (e.g., 𝐺(⋅)) at the training epoch 𝑡, respectively.
Updating the teacher model weights in this method can filter out model
weights with poor performance and make the weight update ratio
larger when the model is better, thereby maximizing the ensemble of
7

the highest-quality model weights. o
3.2.2. Generating pseudo-labels and re-learning
In Stage 2, we perform Monte-Carlo dropout sampling (Yu et al.,

019) on the BMA teacher model 𝑇 (𝜃) to get more reliable prediction
results as pseudo-labels for unlabeled data. In detail, we apply dropout
layers on the teacher model as an approximation of the Bayesian neural
network and apply Gaussian noise to the input. Then, the teacher
model performs 𝐷 random forward propagation and averages the ob-
tained prediction results to obtain the final reliable soft pseudo-label.
Formally, this process can be defined as:

𝑃𝑠 =
1
𝐷

𝐷
∑

𝑖=1
𝑇
(

𝑥′′ + 𝜉𝑖
)

, (14)

where 𝑃𝑠 is the reliable soft pseudo-label, and 𝜉𝑖 is the Gaussian noise.
Then, we use the generated soft pseudo-labels to obtain a new loss.
They are composed of two parts, including the supervision loss (sup)
and the ASC loss (ASC) following Semi-CML. In the re-learning stage,
the positive and negative sample pairs in the ASC loss consist of
the prediction from one of two modalities and the soft pseudo-label
generated by the BMA teacher model, which is defined as follows:

ReL
ASC

(

�̂�, 𝑃𝑠
)

= 1
2𝐾

∑

(�̂�,𝑃𝑠)∈𝛤+

(

𝑙𝑎𝑠𝑐
(

�̂�, 𝑃𝑠
)

+ 𝑙𝑎𝑠𝑐
(

𝑃𝑠, �̂�
))

, (15)

here �̂� is the output of the supervised model and K is the number of
nlabeled images in a mini-batch. The pseudo-label re-learning process
s mainly for low-performance modality, so the supervising formula is
efined as follows:

min
𝐹

′
ReL(𝐹 ) = E𝑥′ ,𝑃𝑠

[

𝛼1ReL
ASC

(

𝐹
(

𝑥′
)

, 𝑃𝑠
)

+
(

1 − 𝛼1
)

′
sup

(

𝐹
(

𝑥′
)

, 𝑃𝑠
)

]

, (16)

where 𝛼1 is a balance factor for the training of a low-performance
modality. The pseudo-labels generated by the BMA teacher model are
also helpful for the training of a high-performance modality. Therefore,
we also perform a similar supervision for a high-performance modality,
which is defined as follows:

min
𝐺

′′
ReL(𝐺) = E𝑥′′ ,𝑃𝑠

[

𝛼2ReL
ASC

(

𝐺
(

𝑥′′
)

, 𝑃𝑠
)

+
(

1 − 𝛼2
)

′′
sup

(

𝐺
(

𝑥′′
)

, 𝑃𝑠
)

]

, (17)

where 𝛼2 is a balance factor for the training of high-performance
odality. To ensure the low-performance modality has a more stable

ptimization during the re-learning process, the re-learning process of
igh-performance modality only starts after the warm-up epoch (𝐿2)
ased on epoch 𝐿1. After the pseudo-label re-learning strategy, the
egmentation performance of the two models will be further improved.
n general, the accuracy of the low-performance modality will increase
ven more, because this learning process provides more cross-modal
nowledge.

. Experiments

.1. Datasets

To verify the effectiveness of our approach, we have conducted
xtensive evaluations on two publicly available multi-modal datasets,
ICCAI 2020 Hecktor Challenge (Andrearczyk et al., 2020; Yuan, 2020)

nd BraTS 2019 Challenge (Bakas et al., 2017, 2018; Menze et al.,
014). Each dataset is randomly divided into two parts based on
atient-level 3D image volumes: 80% of the 3D image volumes are
sed as the training set and the other 20% are used as the test set.
hen, we get sliced data from the 𝑧-axis in each 3D volume for 2D

mage segmentation, and remove the background only slices (no lesion
ncluded) to prevent data imbalance. Finally, we obtain 5788 slices for
he Hecktor dataset and 13 850 slices for the BraTS dataset. The details

f datasets and preprocessing are as follows.
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Table 1
The results of Semi-CML with PReL and the state-of-the-art fully-supervised and single-modal semi-supervised segmentation methods on the Hecktor and BraTS datasets with 1%,
5%, and 10% labeled data in terms of DSC and Sens.

Methods Hecktor BraTS

Modality CT PET T2 T1CE T1 FLAIR

Metrics DSC Sens DSC Sens DSC Sens DSC Sens DSC Sens DSC Sens

1%

Sup 0.1106 0.1058 0.2807 0.3766 0.2161 0.2196 0.1358 0.1459 0.1249 0.1183 0.3296 0.3257
MT 0.1423 0.1545 0.3031 0.4749 0.2429 0.2526 0.2628 0.3145 0.1586 0.2241 0.3461 0.3410
ICT 0.1394 0.1577 0.3401 0.3365 0.2483 0.2767 0.2233 0.2514 0.1672 0.1523 0.3616 0.3798
DTC 0.1621 0.2133 0.3215 0.3854 0.2442 0.2766 0.2563 0.3584 0.1614 0.2008 0.3374 0.3182
DTML 0.1337 0.1541 0.3130 0.4449 0.2435 0.2495 0.2656 0.2980 0.1559 0.2037 0.3726 0.3753
SASS 0.1797 0.1920 0.3116 0.4091 0.2391 0.3063 0.2253 0.2175 0.1745 0.2336 0.3331 0.3264
UAMT 0.1222 0.1326 0.3195 0.3461 0.2823 0.3501 0.2350 0.2147 0.1841 0.2291 0.3565 0.3619
UMCT 0.1546 0.3311 0.3648 0.4590 0.2445 0.2727 0.2544 0.2551 0.1804 0.2407 0.3304 0.3232
SPCT 0.1410 0.3605 0.3321 0.4826 0.3092 0.3556 0.2647 0.2537 0.1855 0.2932 0.3582 0.3441

Ours 0.2837 0.3627 0.4260 0.4886 0.3391 0.3470 0.4316 0.4718 0.3184 0.3644 0.4337 0.4833

5%

Sup 0.2375 0.2709 0.4776 0.5221 0.3229 0.4876 0.3852 0.3613 0.2255 0.2085 0.3987 0.4198
MT 0.2669 0.3639 0.5103 0.6320 0.3857 0.3747 0.4504 0.4491 0.2713 0.3071 0.4090 0.4290
ICT 0.2430 0.3420 0.5403 0.6785 0.3648 0.3307 0.4660 0.4340 0.2742 0.3026 0.4035 0.4150
DTC 0.2513 0.3584 0.5163 0.6086 0.3770 0.3643 0.4562 0.4335 0.2730 0.2702 0.4011 0.4163
DTML 0.2729 0.2939 0.5114 0.5885 0.3761 0.3769 0.4520 0.4308 0.2743 0.2764 0.3586 0.3506
SASS 0.2663 0.3924 0.5224 0.5573 0.3624 0.3611 0.4508 0.4305 0.2728 0.2612 0.4154 0.4327
UAMT 0.3029 0.3735 0.5244 0.5870 0.3993 0.3983 0.4697 0.4777 0.3104 0.3556 0.4209 0.4683
UMCT 0.2712 0.4549 0.5419 0.6196 0.3942 0.3866 0.4681 0.4377 0.3093 0.3432 0.4410 0.4922
SPCT 0.2899 0.3729 0.5410 0.6486 0.4135 0.4059 0.4581 0.4038 0.2959 0.3176 0.4312 0.4346

Ours 0.3835 0.4411 0.5868 0.6823 0.4806 0.5455 0.6121 0.6403 0.4049 0.4962 0.4854 0.5858

10%

Sup 0.2866 0.3688 0.5080 0.5931 0.4368 0.4020 0.4920 0.4416 0.2724 0.2597 0.4264 0.4410
MT 0.3034 0.3687 0.5320 0.6238 0.4468 0.4243 0.5627 0.5410 0.3328 0.3381 0.4507 0.5024
ICT 0.2960 0.4496 0.5525 0.6642 0.4588 0.4572 0.6308 0.5938 0.3733 0.3805 0.4571 0.4976
DTC 0.3075 0.4111 0.5419 0.6397 0.4600 0.4619 0.5765 0.5192 0.3265 0.3169 0.4585 0.4905
DTML 0.2944 0.4225 0.5483 0.6870 0.4760 0.4483 0.5464 0.5023 0.3283 0.3003 0.4450 0.4701
SASS 0.2969 0.4435 0.5507 0.6715 0.4553 0.4559 0.5530 0.5071 0.3229 0.3087 0.4609 0.4842
UAMT 0.3098 0.3913 0.5501 0.7266 0.4521 0.4339 0.6157 0.5926 0.3424 0.3610 0.4736 0.5590
UMCT 0.3257 0.5269 0.5545 0.6324 0.4670 0.4556 0.5937 0.5662 0.3549 0.3448 0.4897 0.5133
SPCT 0.3281 0.4050 0.5617 0.6612 0.4783 0.4592 0.5908 0.5589 0.3474 0.3237 0.4979 0.5360

Ours 0.3942 0.4874 0.6072 0.6897 0.5612 0.6189 0.6656 0.6917 0.4508 0.4990 0.5302 0.6079

Sup (50%) 0.3334 0.3713 0.5476 0.6351 0.5209 0.5033 0.6790 0.6397 0.4464 0.4322 0.5252 0.5755
Sup (100%) 0.4057 0.4390 0.5806 0.6410 0.5645 0.5654 0.7083 0.6749 0.4898 0.4760 0.5569 0.5778
f
e

Hecktor. The dataset is provided by a MICCAI 2020 challenge called
Ead and neCK TumOR segmentation challenge (Hecktor), which is a
ulti-modal CT-PET dataset consisting of 201 3D image volumes. All

CT volumes are clipped within the range [−150, 150] Hounsfield Units
(HU). Max–min normalization is performed for PET volumes in the
range of 0 to 1. All slices for both modalities are cropped to the size
of 144 × 144.

BraTS 2019. The dataset is designed for brain tumor segmentation
using multi-modal magnetic resonance imaging (MRI) scans, containing
259 high-grade gliomas (HGG) data and 76 low-grade gliomas (LGG)
data, and we only use the HGG data in our experiments. The dataset
contains four modalities: T1, T1CE, T2, and FLAIR. The task is to
segment three areas, namely, whole tumor (WT), enhanced tumor (ET),
and tumor core (TC). Each volume is normalized to zero mean and unit
variance; slices are center-cropped to the size of 160 × 160.

4.2. Implementation details

All models are implemented using PyTorch 1.6, CUDA 10.1, and
are run on a GeForce RTX 2080 TI GPU. The training time of our
method only needs about 40 min for the Hecktor dataset and 90 min
for the BraTS dataset. Our method and all baselines use the same code
base, including the same segmentation network backbone, training
process, and evaluation methods. We fix a random seed to ensure that
the same training result and evaluation result can be obtained under
the same hyperparameters. For a fair comparison, we perform full
hyperparameter tuning for each model under each case and report the
optimal results. Specific experimental details are as follows.

The U-Net (Ronneberger et al., 2015) model is used as the segmen-
tation backbone network for all methods. The U-Net encoder includes
8

w

four maximum poolings to reduce the original image resolution by 16
times, and it includes five layers of double convolutional blocks. The
feature numbers of these blocks are 32, 64, 128, 256, and 512, respec-
tively. For the U-Net decoder, four transposed convolutions are per-
formed to restore the original image resolution. In the semi-supervised
setting, we randomly select labeled and unlabeled data at three differ-
ent scales (1%, 5%, and 10%). We have two types of mini-batches in
our work, the size of the mini-batch of labeled slices is 30 (resp., 20) and
that of the mini-batch of unlabeled slices (i.e., K in Eqs. (10) and (15))
is 26 (resp., 4) for the Hecktor (resp., BraTS) dataset. The max epoch
𝑡𝑚𝑎𝑥 (in Algorithm 1) is set to 81 for 5% and 10% labeled data, and to
121 for 1% labeled data.

Furthermore, the values of hyperparameters of our proposed method
are determined by searching within some empirically defined value
sets/ranges. Since the hyperparameter search is conducted for each
segmentation task to get the optimal results, and our experiments
evaluate several tasks, to keep it concise, we give here the search
strategies of the hyperparameters instead of showing the specific values
of all hyperparameters under all tasks (but the specific values can still
be found in the online released codes). Specifically, the initial learning
rate is searched within the value range [0.0002, 0.008] with a step of
0.0004, and the learning strategy is warmup MultiStep (Goyal et al.,
2017), which increases the learning rate slowly and then decreases in
multiple steps. We use the Adam (Kingma and Ba, 2014) optimizer,
and the weight decay coefficient is searched within the value set {1𝑒−
4, 1𝑒−3, 1𝑒−2, 1𝑒−1}. 𝛽 and 𝛾 in the supervised loss (in Eq. (3)) are 10.0
and 7.0, respectively. In Semi-CML, the weight of MSE 𝑤1 (in Eq. (11))
ollows a ramp-up function to adjust the weight value according to the
poch number (similar setting as in Tarvainen and Valpola (2017)),

here the weight coefficient in ramp-up function is searched within
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(

Fig. 3. The DSC results of Semi-CML with PReL and the state-of-the-art fully-supervised and single-modal semi-supervised segmentation methods using other combinations of two
modalities from the four modalities in the BraTS dataset with 5% and 10% labeled data.
the value set {0.001, 0.05, 0.1, 1.0, 10, 50, 100}; the weight of ASC 𝑤2
in Eq. (11)) is searched within the value range [2.5, 4] with a step

of 0.1. In PReL, the start epoch of BMA update 𝑚 (in Algorithm 1) is
searched within the value set {5, 10}; the start epoch of PReL for Model
1, 𝐿1 (in Algorithm 1), is searched within the value set {51, 55, 61, 71};
the start epoch of PReL for Model 2, 𝐿2 (in Algorithm 1), is calculated
by the function 𝐿2 = (𝑡max−𝐿1)×𝑟+𝐿1, where the value of 𝑟 is searched
within the value set {0.4, 0.6, 0.8}; the BMP number 𝑝 (in Algorithm 1)
is searched within the value set {1, 2, 4, 6}; the times of Monte Carlo
samples 𝐷 (in Eq. (14)) is set by searching the value set {4, 8}; and
the balancing factors 𝛼1 (in Eq. (16)) and 𝛼2 (in Eq. (17)) are both
searched within the value set {0.05, 0.1, 0.5, 0.9} for the Hecktor dataset
and within the value set {0.1, 0.5, 0.9, 0.95, 0.99} for the BraTS dataset.

4.3. Evaluation metrics

We mainly use two evaluation metrics, dice similarity coefficient
(DSC) and sensitivity (Sens), to verify the segmentation performances
of all methods. The formal definition of DSC and Sens functions are as
follows: DSC = 2𝑇𝑃∕(𝐹𝑃 + 2𝑇𝑃 + 𝐹𝑁) and Sens = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁),
where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 are true positive, false positive, true
negative, and false negative, respectively. Furthermore, to show the
superior segmentation performances of our proposed method more
comprehensively, a boundary-based evaluation metric Boundary IoU
(BIoU) (Cheng et al., 2021) is additionally used in our experiments,
which is more sensitive to the boundary errors of the target areas and
does not overpunish the errors of smaller objects. The reported results
of DSC and Sens are the average values among patients’ 3D image
volumes, while those of BIoU are the average results among 2D slices.

4.4. Main results

4.4.1. Comparison with state-of-the-art fully-supervised methods
We first compare our method with the fully-supervised method
9

(denoted Sup) using the 1%, 5%, and 10% labeled data on both two
datasets. The results in Table 1 show that our semi-supervised model
has a significant improvement in any modalities of two datasets. For ex-
ample, when only 1% of labeled Hecktor data are used, the DSC results
of our method are 0.2837 and 0.4260 on the CT and PET modalities,
respectively; but they are only 0.1106 and 0.2807 if using the fully-
supervised learning method (Sup). Furthermore, the DSC results of our
method are 0.1577 and 0.2269 higher than those of Sup for the T2 and
T1CE modalities on BraTS using 5% labeled data; while the increases
are 0.1784 and 0.1038 for the T1 and FLAIR modalities on BraTS
using 10% labeled data. We then compare our method with the fully-
supervised solution using more labels. The segmentation results of our
model (with 10% labeled data) surpass most of the results of Sup using
50% labeled data and are close to the results of Sup using 100% labeled
data. Especially, on the Hecktor dataset, our method (with 10% labeled
data) have generally outperformed the fully-supervised method with
100% labeled data. These thus prove the effectiveness of our method
in making use of a large amount of unlabeled data to help deep model
achieve great performance improvements.

4.4.2. Comparison with state-of-the-art single-modal semi-supervised meth-
ods

Several state-of-the-art semi-supervised single-modal segmentation
methods are also used as the baselines, including mean teacher (MT)
(Tarvainen and Valpola, 2017), interpolation consistency training (ICT)
(Verma et al., 2019), dual-task consistency (DTC) (Luo et al., 2021),
dual-task mutual learning (DTML) (Zhang and Zhang, 2021), shape-
aware semi-supervision (SASS) (Li et al., 2020b), uncertainty-aware
mean teacher (UAMT) (Yu et al., 2019), uncertainty-aware multi-view
co-training (UMCT) (Xia et al., 2020), and self-paced and self-consistent
co-training (SPCT) (Wang et al., 2021a). Since these methods are de-
signed for single-modal images, and our method only requires a single
modality in the inference phase (multi-modal data are used only in the
training phase), we choose the above methods and train their models
with data of both modalities to compare with ours. The results are also
shown in Table 1.
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Fig. 4. Visualization of segmentation results using dual-modal images for the same slice in the Hecktor and BraTS datasets with 10% labeled data.
Generally, it can be witnessed that our method significantly outper-
forms all the state-of-the-art single-modal semi-supervised methods in
almost all cases on both datasets in terms of both DSC and Sens, which
proves the superior medical image segmentation performances of our
work. Furthermore, some other observations are as follows. First, all
10
the semi-supervised methods have obtained certain performance im-
provements comparing to the fully-supervised methods (Sup), indicat-
ing that semi-supervised segmentation methods can effectively utilize
unlabeled data to improve the models’ performances. Second, the co-
training methods obtain better segmentation performances than other
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Table 2
The segmentation results of our method and multi-modal semi-supervised methods on both datasets with 1%, 5%, and 10% labeled data in terms of DSC and Sens, where bold
(resp., underlined) values are the best results of our method and the baselines using single (resp., dual) modality inference.

Methods Inference modality 1% labeled data 5% labeled data 10% labeled data

DSC Sens DSC Sens DSC Sens

Hecktor

MM-MT CT-PET 0.3137 0.4360 0.5344 0.6162 0.5637 0.6972
PET 0.2879 0.4040 0.3774 0.3455 0.5077 0.5928

MM-ICT CT-PET 0.3406 0.4520 0.5534 0.6543 0.5737 0.6883
PET 0.0528 0.0311 0.2402 0.1994 0.1289 0.0963

MM-DTC CT-PET 0.3282 0.3887 0.5514 0.6211 0.5887 0.6920
PET 0.2256 0.2437 0.3343 0.3076 0.5114 0.5260

MM-DTML CT-PET 0.3159 0.4055 0.5614 0.6802 0.5926 0.6785
PET 0.2752 0.2560 0.2897 0.2327 0.3474 0.3055

MM-SASS CT-PET 0.3202 0.4451 0.5575 0.6067 0.5805 0.7170
PET 0.2234 0.2243 0.4600 0.5287 0.2710 0.2456

MM-UAMT CT-PET 0.3307 0.4442 0.5543 0.6523 0.5961 0.7202
PET 0.1472 0.1031 0.4196 0.5349 0.5429 0.6024

MM-UMCT CT-PET 0.3306 0.5315 0.5534 0.6897 0.5969 0.7361
PET 0.2625 0.3667 0.2445 0.2706 0.3833 0.3518

MM-SPCT CT-PET 0.3454 0.4655 0.5885 0.6632 0.6083 0.6656
PET 0.2977 0.3061 0.4662 0.4375 0.3947 0.3835

DAFNet CT-PET 0.4190 0.5580 0.5450 0.6600 0.5840 0.6930
PET 0.3510 0.4320 0.3550 0.3070 0.3950 0.3730

FewGAN CT-PET 0.3388 0.4618 0.5216 0.7448 0.5773 0.6404
PET 0.1307 0.2417 0.0424 0.0263 0.4432 0.4981

Ours PET 0.4260 0.4886 0.5868 0.6823 0.6072 0.6897

BraTS (T2-T1CE)

MM-MT T2-T1CE 0.4579 0.4226 0.6269 0.5915 0.6946 0.6412
T1CE 0.1265 0.3526 0.0895 0.4502 0.0909 0.3972

MM-ICT T2-T1CE 0.4522 0.4208 0.6324 0.5881 0.6992 0.6364
T1CE 0.1238 0.3053 0.0968 0.3915 0.1417 0.3633

MM-DTC T2-T1CE 0.4378 0.4296 0.6071 0.5550 0.6607 0.6034
T1CE 0.1049 0.4036 0.1036 0.3518 0.1159 0.4014

MM-DTML T2-T1CE 0.4455 0.4173 0.6033 0.5482 0.6777 0.6346
T1CE 0.0628 0.3840 0.0860 0.3137 0.0943 0.4341

MM-SASS T2-T1CE 0.4119 0.3733 0.6187 0.5708 0.6814 0.6293
T1CE 0.1175 0.3140 0.1059 0.2951 0.1135 0.1135

MM-UAMT T2-T1CE 0.4601 0.4368 0.6445 0.6181 0.7069 0.6873
T1CE 0.1209 0.3881 0.0834 0.4129 0.1066 0.4793

MM-UMCT T2-T1CE 0.4629 0.4485 0.6440 0.6018 0.7187 0.6590
T1CE 0.0643 0.4382 0.1122 0.4067 0.1636 0.4284

MM-SPCT T2-T1CE 0.4817 0.4257 0.6478 0.5894 0.7191 0.6614
T1CE 0.1219 0.3612 0.1213 0.3587 0.1307 0.4154

DAFNet T2-T1CE 0.4960 0.4790 0.6120 0.5120 0.6830 0.6200
T1CE 0.3940 0.3770 0.4980 0.3810 0.5390 0.4330

FewGAN T2-T1CE 0.4612 0.5043 0.6165 0.6773 0.6795 0.6296
T1CE 0.0924 0.4118 0.0980 0.5515 0.1128 0.3739

Ours T1CE 0.4316 0.4718 0.6121 0.6403 0.6656 0.6917

(continued on next page)
semi-supervised methods, which proves the effectiveness of multi-view
co-training. Third, the existing single-modal semi-supervised meth-
ods generally have poor performance improvements for the low-
performance image modalities on both Hecktor and BraTS. For exam-
ple, with 10% labeled data, the DSC improvements of the best baseline
(SPCT) compared to the fully-supervised method (Sup) are only 0.0415,
0.0415, and 0.0750 in the low-performance modalities, CT, T2, and T1,
while those are 0.0537, 0.0988, and 0.0715 in the corresponding high-
performance modalities, PET, T1CE, and FLAIR, respectively. However,
our method can achieve significant performance improvements in both
low-performance and high-performance modalities. For example, with
10% labeled data, the DSC improvements of our method compared to
the fully-supervised method are 0.1076, 0.1244, and 0.1784 in the low-
performance modalities, CT, T2, T1, respectively; while those in the
corresponding high-performance modalities, PET, T1CE, and FLAIR, are
0.0992, 0.1736, and 0.1038, respectively. These results fully demon-
11

strate that, with the help of mutual learning in CML and PReL, our
method can utilize the information in both modalities to complement
each other and thus achieve great performance improvements in both
modalities.

To further verify the effectiveness of our proposed method, other
combinations of two modalities from the four modalities in the BraTS
dataset are also used for evaluation; Fig. 3 exhibits the four groups of
experimental results in DSC using 5% and 10% labeled data. Gener-
ally, our method still achieves better segmentation performances than
the state-of-the-art fully-supervised and semi-supervised segmentation
methods in any combination of two modalities. To qualitatively demon-
strate the superior performances of our proposed method, we visualize
the segmentation results of our method, the fully-supervised method,
and the semi-supervised baselines with 10% labeled data in Fig. 4. We
show the results of CT and PET images corresponding to the same slice
number in the Hecktor dataset, and those of T2 and T1CE in the BraTS
dataset. In Fig. 4, our method shows a higher rate of lesion area overlap

and fewer false positives than the baselines. Furthermore, for a given
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Table 2 (continued).
Methods Inference modality 1% labeled data 5% labeled data 10% labeled data

DSC Sens DSC Sens DSC Sens

BraTS (T1-FLAIR)

MM-MT T1-FLAIR 0.3929 0.4132 0.4433 0.4582 0.4912 0.5073
FLAIR 0.2407 0.2166 0.2178 0.2071 0.2946 0.3142

MM-ICT T1-FLAIR 0.3836 0.3865 0.4443 0.4630 0.5105 0.5435
FLAIR 0.3229 0.3178 0.2475 0.2511 0.2917 0.4338

MM-DTC T1-FLAIR 0.3712 0.3825 0.4319 0.4515 0.5016 0.5174
FLAIR 0.2042 0.1827 0.2248 0.2671 0.3023 0.3380

MM-DTML T1-FLAIR 0.3926 0.3962 0.4306 0.4602 0.5080 0.5149
FLAIR 0.2459 0.2209 0.2466 0.2465 0.2809 0.3296

MM-SASS T1-FLAIR 0.3868 0.4081 0.4232 0.4416 0.4939 0.5216
FLAIR 0.2744 0.2387 0.1932 0.2407 0.2667 0.4287

MM-UAMT T1-FLAIR 0.3956 0.4195 0.4615 0.5733 0.5129 0.5891
FLAIR 0.2601 0.2275 0.3048 0.3087 0.4047 0.4895

MM-UMCT T1-FLAIR 0.4054 0.4243 0.4525 0.5602 0.5040 0.5230
FLAIR 0.3372 0.3365 0.2610 0.2662 0.3089 0.3083

MM-SPCT T1-FLAIR 0.4002 0.4220 0.4638 0.4860 0.5131 0.5355
FLAIR 0.2595 0.2357 0.2444 0.2393 0.2934 0.3684

DAFNet T1-FLAIR 0.4100 0.5900 0.5050 0.5300 0.5260 0.5880
FLAIR 0.3460 0.4960 0.3720 0.4710 0.4540 0.5660

FewGAN T1-FLAIR 0.3892 0.5889 0.4390 0.5242 0.4805 0.5356
FLAIR 0.3173 0.4565 0.2207 0.1968 0.2575 0.2544

Ours FLAIR 0.4337 0.4833 0.4854 0.5858 0.5302 0.6079
Table 3
Ablation studies of our method on the Hecktor and BraTS datasets with 10% labeled data using DSC and Sens as evaluation metrics.

Methods Hecktor BraTS

CT PET T2 T1CE

DSC Sens DSC Sens DSC Sens DSC Sens

sup 0.2866 0.3688 0.5080 0.5931 0.4368 0.4020 0.4920 0.4416

CML

sup+mse 0.2916 0.3805 0.5078 0.5700 0.4667 0.4538 0.5039 0.4625
sup+NCE 0.3346 0.4155 0.5097 0.6211 0.5006 0.4599 0.6225 0.5759
sup+mse+NCE* 0.2825 0.3158 0.5044 0.5505 0.5044 0.4910 0.6151 0.5795
sup+mse+NCE 0.3550 0.4264 0.5210 0.6433 0.5162 0.4886 0.6272 0.5858
sup+ASC 0.3667 0.3978 0.5831 0.6551 0.5235 0.4925 0.6433 0.5981
sup+mse+ASC 0.3758 0.4014 0.6011 0.6634 0.5314 0.5120 0.6574 0.6312

PReL
PReL (Base) 0.3884 0.4721 0.6023 0.6777 0.5429 0.5385 0.6614 0.6534
PReL (EMA) 0.3897 0.4786 0.6033 0.6796 0.5436 0.5398 0.6626 0.6559
PReL (BMA) 0.3942 0.4874 0.6072 0.6897 0.5612 0.6189 0.6656 0.6917
pair of dual-modal images, the segmentation results generated by our
work are more consistent to each other than those of the baselines.
This is because our method utilize mutual learning to help different
modalities learn from each other and make their predictions better and
closer. Consequently, we conclude that information in multi-modal data
is very important and should be used for semi-supervised medical image
segmentation tasks.

4.4.3. Comparison with state-of-the-art multi-modal semi-supervised meth-
ods

Furthermore, to prove that the superior performance of our work
is not solely coming from multi-modal information, but also due to its
technical superiority, we further compare our method with the existing
multi-modal semi-supervised segmentation solutions, DAFNet (Chart-
sias et al., 2020) and few-shot GAN (denoted FewGAN) (Mondal
et al., 2018), and also with the multi-modality extended version of
MT, ICT, DTC, DTML, SASS, UAMT, UMCT, and SPCT (‘‘MM-’’ is
added as a prefix for distinction). Specifically, the MM extension is
achieved by using a dual-modal fusion model (U-Net network with a
dual encoder and a shared decoder) and feeding two-modal images
into the network simultaneously. According to the results in Table 2,
we first find that, compared with the original single-modal models
in Table 1, the segmentation performances of multi-modal models
have been greatly enhanced. For example, for 10% labeled data, the
DSC of MM-UAMT in Table 2 using bimodal CT-PET is 0.046 higher
12
than that of UAMT in Table 1 using PET only; similarly, the DSC
performance of MM-UMCT (resp., MM-SPCT) using bimodal T1-FLAIR
is 0.0143 (resp., 0.0152) higher than that of UMCT (resp., SPCT)
using FLAIR only. Therefore, this proves that the use of multi-modal
data will improve the models’ performances, so it is important to
utilize multi-modal information in medical image segmentation tasks.
Second, our proposed method greatly outperforms the existing two
multi-modal semi-supervised methods (i.e., DAFNet and FewGAN) and
the extended multi-modal semi-supervised works in nearly all cases on
both datasets when all models are trained using two modalities and
inferred with only one modality (the best results are bold); furthermore,
even when DAFNet, FewGAN, and the extended multi-modal semi-
supervised methods are inferred using two modalities, our method
(using only one modality for inference) can still achieve competitive
and sometimes even better performances (especially, in the T1-FLAIR
case) than their dual-modal inference results (the best results are
underlined). This is because the multi-modal semi-supervised baselines
are usually highly coupled fusion networks, which thus need bi-modal
information in the inference stage to ensure satisfactory results; con-
sequently, they usually have a great performance degradation when
there is only one modality for inference, due to the lack of information
of the other modality. For example, MM-UAMT has a DSC of 0.7069
when performing T2-T1CE dual-modal inference, but its DSC is only
0.1066 when using only T1CE for inference. However, for our method,
the learned segmentation models for the two modalities are quite
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independent, so it only needs one modality for inference, and its single
modal inference results are close to or sometimes even exceed the
dual-modal inference results of the multi-modal baselines. Therefore,
our method is much easier to be used in clinical practices, because
it only needs one modality of medical images to obtain satisfactory
segmentation results, which greatly reduces the patients’ time and
money costs.

4.5. Ablation studies

To verify the effectiveness of our semi-supervised segmentation
method, we conducted ablation experiments on both two datasets and
show the results in Table 3, where CML represents Semi-CML, and PReL
represents Semi-CML with PReL.

4.5.1. Ablation experiments for CML
We first verified the effectiveness of the MSE loss and the ASC loss

for the mutual learning in the Semi-CML framework. First, we find from
Table 3 that: (i) the performances of using both the fully-supervised and
MSE losses (denoted sup+mse) as the final loss are better than those
of using solely the fully-supervised loss (denoted sup); (ii) the perfor-
mances of using the fully-supervised, MSE, and NCE losses (denoted
sup+mse+NCE) are better than those of using the fully-supervised and
NCE losses (denoted sup+NCE); (iii) the performances of using the
fully-supervised, MSE, and ASC losses (denoted sup+mse+ASC) are
better than those of using the fully-supervised and ASC losses (denoted
sup+ASC). Since the segmentation performances are always improved
by additionally introducing the MSE loss into the final loss, we believe
that the MSE loss is effective and essential for our method to achieve the
superior performances. The effectiveness of the MSE loss may be for the
following reason: although multi-modal medical images have different
intensity characteristics, for any given patient, they will still share
the same segmentation mask as the ground truth in the multi-modal
segmentation tasks, i.e., when the multi-modal images are used as the
inputs of the multi-modal segmentation models, they are expected to
obtain the same (or at least similar) segmentation results; consequently,
using the MSE loss for mutual learning will help the segmentation sub-
network of each modality to learn complementary knowledge from
the other modality and generate as consistent segmentation results
as possible for the multi-modal images. Therefore, we conclude that
MSE is a different type of consistency loss from NCE and ASC; so
introducing it into the final loss will help the multi-modal model to
achieve a more comprehensive multi-modal consistency supervision
in the mutual learning. Second, we implement the NCE loss in two
ways, i.e., with and without using the projection head to encode
the prediction map into the embedding vector (denoted NCE* and
NCE, respectively); by comparing sup+mse+NCE* with sup+mse+NCE,

consistent performance degradation is witnessed when the projec-
ion head is used, proving that the projection head is harmful for
he contrastive loss in segmentation tasks with dense predictions; so
he projection head is not used in the proposed ASC loss. Third, we
lso find that sup+mse+NCE and sup+NCE are generally better than
hose of sup+mse in all cases, which thus proves the effectiveness of
dding the contrastive loss NCE and the necessity of also maximizing
he differences between the negative samples. Finally, sup+ASC and

sup+mse+ASC respectively achieve better performances than sup+NCE
and sup+mse+NCE, mainly because ASC pays extra attention to the
area context information of the segmentation map. This proves that the
ASC loss is a better choice than the traditional contrastive loss (NCE)
13

in the multi-modal semi-supervised segmentation task.
Table 4
The BIoU results of our method and the single-modal semi-supervised baselines on
Hecktor and BraTS with 10% labeled data.

Methods Hecktor BraTS

CT BIoU PET BIoU T1 BIoU FLAIR BIoU

Sup 0.1497 0.3215 0.0923 0.2144
MT 0.1725 0.3260 0.1358 0.2374
ICT 0.1553 0.3487 0.1513 0.2348
DTC 0.1678 0.3437 0.1277 0.2331
DTML 0.1631 0.3669 0.1330 0.2181
SASS 0.1644 0.3518 0.1299 0.2278
UAMT 0.1722 0.3506 0.1365 0.2517
UMCT 0.1855 0.3513 0.1396 0.2475
SPCT 0.1783 0.3634 0.1366 0.2456
Ours 0.2073 0.3620 0.2030 0.2876

4.5.2. Ablation experiments for PReL
We further verify the effectiveness of the proposed PReL strategy in

improving segmentation performances and reducing performance gaps
between modalities. We have the following observations in Table 3.
First, using the PReL strategy can further improve the segmentation
performances of both modalities on both datasets, proving the effective-
ness of the proposed soft pseudo-label re-learning strategy. Specifically,
when generating a teacher model, using the EMA method has better
performances than directly using the high-performance model (Base);
however, EMA’s performances are still worse than those of BMA. This
is because EMA may introduce poor model weights, while the BMA
strategy selects the best model weights when updating the teacher
model. By using the BMA re-learning scheme, the segmentation per-
formances of the low-performance modality on both datasets enhance
about 0.02 for DSC and 0.09 for Sens, and the performances of the high-
performance modality are also improved on both datasets. Second, the
segmentation gaps between different modalities have been greatly nar-
rowed with the help of PReL: When PReL is not used, the gaps between
CT and PET in terms of DSC and Sens in the best model (sup+mse+ASC)
are 0.2253 and 0.262, respectively; and the gaps between T2 and T1CE
in DSC and Sens are 0.126 and 0.1192. After applying PReL, the gaps
between CT and PET in terms of DSC and Sens in our final proposed
model have been reduced to 0.213 (gap narrowed by 5.4%) and 0.2023
(gap narrowed by 22.8%); similarly, the gaps between T2 and T1CE in
DSC and Sens are reduced to 0.1044 (gap narrowed by 17.1%) and
0.0728 (gap narrowed by 38.9%). Therefore, we can conclude that
although PReL cannot fully close the gap, it indeed greatly narrows the
performance gap between two modalities.

4.6. Additional experiments

4.6.1. Effectiveness in boundary-based evaluation metric
Boundary IoU (BIoU) (Cheng et al., 2021) is a boundary-based

image segmentation evaluation metric, which is more sensitive to the
boundary errors of the target areas and does not overpunish the errors
of smaller objects. The formal definition of BIoU is:

BIoU =
|

|

|
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|
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, (18)

where 𝐺 represents the ground truth binary mask, 𝑃 represents the pre-
diction binary mask, 𝐺𝑑 and 𝑃𝑑 indicate the pixel set of the boundary
region of the binary mask, and 𝑑 is the pixel width of the boundary
region (Cheng et al., 2021). In our experiment, 𝑑 is set to 4 for Hecktor
and set to 5 for BraTS.

To show the superior segmentation performances of our proposed
method more comprehensively, we additionally compare the BIoU-
based segmentation results of our method with those of all the state-
of-the-art single-modal semi-supervised methods in Table 4, and with
those of the state-of-the-art multi-modal semi-supervised methods,
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Table 5
The BIoU results of our method and the multi-modal semi-supervised baselines on
Hecktor and BraTS with 10% labeled data, where bold (resp., underlined) values are
the best results of our method and the baselines using single (resp., dual) modality
inference.

Methods Hecktor BraTS

Inference modality BIoU Inference modality BIoU

MM-MT CT-PET 0.3975 T1-FLAIR 0.1388
PET 0.3165 FLAIR 0.1494

MM-ICT CT-PET 0.3612 T1-FLAIR 0.1766
PET 0.0500 FLAIR 0.1588

MM-DTC CT-PET 0.3997 T1-FLAIR 0.1546
PET 0.2986 FLAIR 0.1504

MM-DTML CT-PET 0.3761 T1-FLAIR 0.1692
PET 0.1358 FLAIR 0.1545

MM-SASS CT-PET 0.3775 T1-FLAIR 0.1635
PET 0.1038 FLAIR 0.1484

MM-UAMT CT-PET 0.3939 T1-FLAIR 0.1707
PET 0.3165 FLAIR 0.1922

MM-UMCT CT-PET 0.3999 T1-FLAIR 0.2701
PET 0.1768 FLAIR 0.1714

MM-SPCT CT-PET 0.3904 T1-FLAIR 0.2719
PET 0.1992 FLAIR 0.1599

DAFNet CT-PET 0.3780 T1-FLAIR 0.2220
PET 0.2040 FLAIR 0.1880

FewGAN CT-PET 0.3504 T1-FLAIR 0.2685
PET 0.2337 FLAIR 0.1234

Ours PET 0.3620 FLAIR 0.2876

Table 6
The DSC results of our method using different weight ratios for two modalities on
Hecktor and BraTS with 10% labeled data.
𝑅 Hecktor BraTS

CT PET Avg. T2 T1CE Avg.

0.1 0.3735 0.5640 0.4688 0.5062 0.6588 0.5825
0.2 0.3896 0.5820 0.4858 0.5476 0.6715 0.6096
0.3 0.3978 0.5856 0.4917 0.5566 0.6618 0.6092
0.4 0.3843 0.5966 0.4905 0.5551 0.6654 0.6103
0.5 0.3942 0.6072 0.5007 0.5612 0.6656 0.6135
0.6 0.3895 0.5834 0.4864 0.5538 0.6698 0.6118
0.7 0.3507 0.5666 0.4586 0.5476 0.6675 0.6075
0.8 0.3534 0.5647 0.4591 0.5410 0.6705 0.6058
0.9 0.3717 0.5766 0.4742 0.5353 0.6411 0.5882

DAFNet and FewGAN, and the corresponding extended multi-modal
semi-supervised methods in Table 5. It can be seen from the ta-
bles that the BIoU-based relative segmentation performances of our
methods and the baselines are very similar to their DSC-based and
Sens-based relative segmentation performances as shown in Tables 1
and 2. Consequently, we have the following findings: (i) our method
is generally better than all single-modal semi-supervised baselines
in BIoU; (ii) our method consistently outperforms the multi-modal
semi-supervised baselines when these models are trained using two
modalities but inferred with only one modality; and (iii) even when the
multi-modal semi-supervised models use two modalities for inference,
the performances of our method (using only one modality for inference)
are still competitive and sometimes even better than those results.
These findings thus prove our conclusion again: our method greatly
outperforms the state-of-the-art semi-supervised segmentation methods
and is much easier to be used in clinical practices.

4.6.2. Analysis for balancing the learning of two modalities in CML
In medical imaging, data in different modalities are usually very

different due to the usage of different imaging equipments or meth-
ods, making images of different modalities contain different effective
information. For multi-modal methods, it is also interesting to explore
14
Table 7
The DSC results of using PReL and two adversarial learning based domain adaptation
methods to narrow the performance gaps of two modalities on Hecktor and BraTS with
10% labeled data.

Methods Hecktor BraTS

CT PET T2 T1CE

CML 0.3754 0.5998 0.5243 0.6631
CML+DA (Adv) 0.3824 0.5998 0.5374 0.6631
CML+DA (AdvW) 0.3832 0.5998 0.5445 0.6631
CML+PReL 0.3942 0.6072 0.5612 0.6656

if the information contained in one modality is more informative than
that of the other. Therefore, additional experiments are conducted by
assigning different weight ratios to two supervision losses in Eq. (4).
Specifically, we set the weight ratio of the supervised loss of the low-
performance modality (i.e., CT in Hecktor, T2 in BraTS) to 𝑅, and
the weight ratio of the other modality to 1 − 𝑅. The experimental
results are shown in Table 6, where we report not only the DSC results
for the corresponding modalities but also the average DSC (denoted
Avg.) among two modalities to show the overall performances of the
multi-modal model.

As shown in Table 6, our method obtains relative better perfor-
mances when the weights of two modalities are close (e.g., 0.4, 0.5,
and 0.6); generally, the closer the weights the better the results, and
when the weights are the same (𝑅 = 0.5), our model obtains the
best performances on both datasets. This observation asserts that the
information contained in both modalities are equally important for
learning the multi-modal model, because their information is usually
complementary. Therefore, in this work, we treat the losses of both
modalities with the same importance in Eq. (4).

4.6.3. Effect of narrowing performance gaps using PReL and Domain Adap-
tation (DA)

Domain adaptation (DA) is an existing method that can be used to
narrow the performance gaps between different modalities. In order to
show that the proposed PReL is a better solution to narrow the perfor-
mance gaps, additional experiments that use adversarial-learning-based
domain adaptation solutions for performance gap narrowing are con-
ducted, where the high-performance modality is treated as the source
domain, the low-performance modality is treated as the target domain,
their segmentation networks are used as generators, and generative
adversarial learning is conducted to make the distributions of the target
domain as close as possible to those of the source domain to narrow the
performance gaps. Specifically, two adversarial-learning-based domain
adaptation solutions are considered: (i) The first solution is DCGAN-
based (Radford et al., 2015) (denoted adv), which uses the predicted
output maps in the generators as the inputs of the discriminator to
perform domain adaptation on the predicted segmentation maps. (ii)
The second approach is similar to Dou et al. (2018), which uses the
fused feature maps of different layers in the generators as inputs to
the discriminator and use WGAN (Arjovsky et al., 2017) for adver-
sarial learning. For a fair comparison, the starting epoch of domain
adaptation keeps the same as that of PReL in all experiments.

The results in Table 7 show that two domain adaptation methods
both effectively improve the DSC performances of low-performance
modalities, i.e., CT and T2, which proves the effectiveness of domain
adaptation methods in narrowing performance gaps. However, their
resulting performances are worse than those of PReL in all modalities
on both datasets, this may be because domain adaptation aims to nar-
row the distribution differences to indirectly narrow the performance
gaps, making them not as effective in narrowing the performance gaps
as PReL, which directly uses the segmentation results of the BMA
teacher model for supervised re-learning. We also notice that the results
of the high-performance modalities cannot be further improved using

domain adaptation, because they are used as the target domains, and
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Fig. 5. Visualization of our proposed ASC loss on the Hecktor dataset. (a) Dice
similarity matrix generated by the ASC loss; (b) Comparison between the ASC and
NCE loss under different hyperparameters.

Fig. 6. Comparison of different batch sizes of unlabeled data (i.e., K in Eqs. (10)
and (15)) in the ASC loss on Hecktor with 10% labeled data. The DSC is the sum of
the results for two modalities.

their models will not be updated anymore; however, the results of
the high-performance and low-performance modalities are both im-
proved by PReL, because pseudo-label re-learning is conducted for both
modalities. Finally, the adversarial-learning-based domain adaptation
solutions needs to train additional discriminators, and the training is
usually unstable. Consequently, all these findings conclude that PReL is
a better choice for performance gap narrowing than domain adaptation
solutions.

4.6.4. Analysis for ASC loss
We visualize the Dice similarity matrix in the ASC loss of the same

mini-batch samples for unlabeled data in different epochs for 10%
labeled data on Hecktor, as shown in Fig. 5(a). It shows that as the
training epoch increases, the positive samples become more and more
similar (darker in the 15th diagonal above and below the main diagonal
position), while the negative samples can be gradually distinguished
(lighter in other locations). This fully proves that our proposed area
similarity contrastive loss plays a role in cross-modal knowledge mutual
learning. Meanwhile, we conduct parallel experiments on the NCE loss
and ASC loss under multiple combinations of hyperparameters, and
show the sum of DSC of the two modalities. It shows that the DSC of the
ASC loss is generally higher than the NCE loss. This is because NCE is
based on the cosine similarity, which cannot utilize the valuable area
context information of images; since the area context information is
usually vital for medical image segmentation tasks, the segmentation
performance improvements using NCE are generally limited. However,
the ASC loss can resolve this problem, where Dice similarity instead
of cosine similarity is used to ensure the model can take into account
the area context information in contrastive learning. Therefore, we can
conclude that Dice similarity, as a similarity measurement function in
contrastive loss, is very beneficial to the semi-supervised segmentation
task.
15
Fig. 7. Analysis of the PReL strategy under 10% labeled data. (a) (c): Comparison of
BMA teacher with different BMP numbers and EMA teacher. (b) (d): Visualization of
the DSC curve after using PReL.

4.6.5. Analysis for batch size of unlabeled data in ASC loss
In the contrastive self-supervised method, it has been proved that

a large batch size of unlabeled data can bring more negative samples
to the contrastive loss, which may help to generate better pre-training
weights and improve the performance of downstream tasks (Chen et al.,
2020; He et al., 2020; Misra and Maaten, 2020). In order to analyze the
impact of batch sizes of unlabeled data (i.e., K in Eqs. (10) and (15)) on
our proposed contrastive loss for multi-modal semi-supervised medical
image segmentation, we compare the segmentation results of different
batch sizes. We sample the experimental results under five different
sets of hyperparameter combinations (including initial learning rate,
the weight of the MSE consistency loss, and the weight of the ASC
loss), and show the experimental results in Fig. 6. It can be seen from
the figure that a large batch size of unlabeled data does not bring a
better performance; actually, there exists a threshold for the optimal
value of the batch size, i.e., too small or too large batch sizes cause
performance degradation, and the best value is obtained in a medium
range (at around 25). This finding is in line with the hypothesis in
the methodology: the ASC loss requires a relative small mini-batch to
construct positive and negative sample pairs to prevent the possibility
of treating adjacent slices of the same patient as negative samples.

4.6.6. Analysis for the BMA teacher re-learning strategy
To give more details on the effect of BMA, we show the results

of the BMA teacher model under different BMP numbers for Hecktor
and BraTS in Figs. 7(a) and 7(c). We can see that the BMA update
strategy can reduce the number of updates of the teacher model (the
box in the figure indicates the number of updates for the teacher
model) and achieve better results than the EMA update strategy under
different numbers of BMP. This proves that BMA can automatically
select the best model weights to update the teacher model based on
the model performance in each epoch. Besides, we show the DSC
metric curves of low-performance modalities CT and T2 in Figs. 7(b)
and 7(d), respectively. The results show that, even after reaching the
convergence epoch, the DSC of the low-performance model can be
further significantly improved after using PReL with a BMA teacher
model.

5. Discussion and future work

5.1. Social impact for proposed algorithm

The proposed model can be widely used in a lot of clinical sce-
narios, where the work of segmenting medical images is needed to
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effectively reduce the workload of doctors and improve the efficiency
and accuracy of medical image segmentation. We take radiotherapy
for cancer as an example, where doctors need to accurately delineate
the outline of the tumor area on the patient’s 3D CT or PET images
as the radiotherapy target area. However, each 3D CT and PET is
composed of hundreds of slices, and will take an experienced doctor
several hours to annotate them one by one. Moreover, since the edge
of the tumor is uneven and very difficult to delineate, to ensure the
accuracy and comprehensiveness of labeling, it is usually necessary
for multiple doctors to label the same image independently, and then
gather them together as the final results. Consequently, the whole
image segmentation process is very time-consuming and laborious; this
not only greatly consumes the medical social resources (e.g., the time
of experienced doctors), but may also bring long waiting times for the
patient and delay the treatment. By applying our proposed automatic
segmentation solution in such clinical practices, the model can generate
the draft segmentation results automatically in seconds, which can then
be sent to experienced doctors for fine-tuning. This thus greatly reduces
the workload of doctors, and saves both time and money for patients.

More importantly, differently from the fully-supervised segmen-
tation solutions that require a huge number of annotated data for
training, our semi-supervised multi-modal segmentation solution can
achieve an accurate segmentation using only a small amount of labeled
training data. This thus greatly reduces the application requirements
and enhances the deployment efficiency of automatic medical image
segmentation systems in clinical practices. In addition, compared to
the existing multi-modal semi-supervised segmentation solution, which
requires the data of two modalities for inference, our proposed solution
can use only one modality to achieve accurate inference. Consequently,
this further enhances the segmentation model’s usability and reduces
the time and examination costs of patients in some clinical scenarios.

5.2. Limitations and future work

Due to the difference between the modalities, different image
modalities may cause large accuracy differences under the same train-
ing settings. The fundamental reason may be that there is a large
domain deviation between the two modalities, leading to a large
difference in the distribution expressed by them in the potential space.
Our proposed method has alleviated this problem to a large extent.
That is, our method can greatly improve the accuracy of the low-
performance modality, which makes the prediction results of the two
modalities closer. However, we cannot make the results of the two
modalities close to similar accuracy for the time being. Although this
may be difficult, we think it is possible to achieve this by introducing
new methods in the future. Therefore, a potential future work is to
further explore how to make the prediction results of the modality
that is more difficult to train closer to the one that is easier to train
using mutual learning between the two modalities. In addition, the
two networks, after learning from each other, can be fused in some
new ways so that a higher precision can be obtained when the two
modalities are input simultaneously.

In our task setting, images of different modalities need to be reg-
istered before they can be directly used in our method. Indeed, there
exists some multi-modal medical images that cannot be easily regis-
tered in clinical practices. However, there are still many combinations
of multi-modal medical images that can be registered using the ex-
isting regulation solutions, e.g., MR to CT registration (Mohammed
and Hassan, 2016; Roy et al., 2014), registration of fluoroscopic X-ray
to CT (Livyatan et al., 2003), PET to MRI registration (Shan et al.,
2011), and preoperative magnetic resonance (MR) to intraoperative
ultrasound registration (Machado et al., 2019). Therefore, even if not
all, our proposed semi-supervised multi-modal segmentation solution
can be applied for many clinical segmentation tasks by registering the
corresponding multi-modal medical images before using them as the
16

inputs. More importantly, after applying registration, we can use the
same segmentation masks for both modalities, which thus reduces half
of the annotation time cost.

Although our experiments are conducted on multi-modal medical
data, we do not think this kind of learning schema is only applicable to
medical imaging. We believe that it can also be used to segment general
multi-modal images in daily life with proper registration, such as the
multi-domain or multi-modal dataset mentioned in Cao et al. (2021),
Martin et al. (2019), Sun et al. (2019) and Vu et al. (2019). Whether
they are classification, detection, or segmentation, it is possible to
improve the results of one of these data types using our proposed
mutual learning method.

Our semi-supervised learning method mainly uses the mutual learn-
ing of two modalities to improve the accuracy of each modality, which
is fundamentally different from other semi-supervised learning strate-
gies. This makes it possible to add other semi-supervised strategies to
our approach. Because almost all semi-supervised learning strategies
are designed using a type of data, these designs can be integrated with
our scheme.

6. Conclusion

In this paper, we proposed a multi-modal semi-supervised seg-
mentation framework named Semi-CML with PReL. This architecture
can achieve accurate medical image segmentation by using unlabeled
multi-modal data for mutual supervised learning. Specifically, with the
help of the area-similarity contrastive loss, one modality model can
learn the complementary information from another modality, which si-
multaneously can improve the segmentation performances of all modal-
ities. In addition, we designed a soft pseudo-label re-learning scheme
based on the BMA teacher model to further improve the segmentation
performances of the low-performance modality. We have conducted
numerous experiments on multiple datasets and the results showed that
the performances of our proposed method (using only a small portion
of labeled data) are close to or sometimes even better than those of
the fully-supervised method with 100% labeled data, and our proposed
method also generally outperforms the state-of-the-art semi-supervised
solutions. In addition, the inference of our work can be performed
when only one modality data is available, and the corresponding
segmentation results approach and even exceed those of the state-of-
the-art semi-supervised multi-modal models that use multi-modal data
for inference. Therefore, our method is much easier to be used in
clinical practices and will greatly reduce the time and money costs of
patients.
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