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A B S T R A C T

Pre-processing is widely applied in medical image analysis to remove the interference information. However,
the existing pre-processing solutions mainly encounter two problems: (i) it is heavily relied on the assistance
of clinical experts, making it hard for intelligent CAD systems to deploy quickly; (ii) due to the personnel and
information barriers, it is difficult for medical institutions to conduct the same pre-processing operations,
making a deep model that performs well on a specific medical institution difficult to achieve similar
performances on the same task in other medical institutions. To overcome these problems, we propose a deep-
reinforcement-learning-based task-oriented homogenized automatic pre-processing (DRL-HAPre) framework to
overcome these two problems. This framework utilizes deep reinforcement learning techniques to learn a
policy network to automatically and adaptively select the optimal pre-processing operations for the input
medical images according to different analysis tasks, thus helping the intelligent CAD system to achieve a
rapid deployment (i.e., painless) and maintain a satisfactory performance (i.e., accurate) among different
medical institutes. To verify the effectiveness and advantages of the proposed DRL-HAPre framework, we
further develop a homogenized automatic pre-processing model based on the DRL-HAPre framework to realize
the automatic pre-processing of key region selection (called HAPre-KRS) in the pneumonia image classification
task. Extensive experimental studies are conducted on three pediatric pneumonia classification datasets with
different image qualities, and the results show that: (i) There does exist a hard-to-reproduce problem in
clinical practices and the fact that having different medical image qualities in different medical institutes is an
important reason for the existing of hard-to-reproduce problem, so it is compelling to propose homogenized
automatic pre-processing method. (ii) The proposed HAPre-KRS model and DRL-HAPre framework greatly
outperform three kinds of state-of-the-art baselines (i.e., pre-processing, attention and pneumonia baseline), and
the lower the medical image quality, the greater the improvements of using our HAPre-KRS model and DRL-
HAPre framework. (iii) With the help of homogenized pre-processing, HAPre-KRS (and DRL-HAPre framework)
can greatly avoid performance degradation in real-world cross-source applications (i.e., thus overcoming the
hard-to-reproduce problem).
1. Introduction

In the past decades, medical imaging technology has been widely
used in clinical diagnosis and treatment to help doctors understand the
physical condition of patients [1]. But reading and analyzing such a
large amount of medical images will cost clinicians and radiologists a
lot of time and energy, and may also result in misdiagnosis due to the
limitation of expertise and/or fatigue; so, in recent years, deep learning
techniques have been increasingly applied in clinical computer-aided
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diagnosis (CAD) for automatic medical image analysis [2]. Due to the
differences in the conditions of imaging equipments, surroundings and
patients, medical images usually contain a lot of interfering information
(e.g., noise, artifacts, irrelevant objects, etc.); therefore, pre-processing
is needed for almost all the deep-learning-based medical image analysis
models to achieve satisfactory performances.

At present, the pre-processing of medical images mainly relies on
the professional knowledge and experience of clinical experts, i.e., for
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different interference information in different types of medical images,
we have to rely on the professional knowledge and experience of clini-
cal experts to determine what kinds of pre-processing operations should
be applied to make the features in medical images easier to learn.
However, this will inevitably result in the following two problems in
the application of deep-learning-based CAD systems in clinical prac-
tices. (i) Hard to deploy quickly: In order to help deep medical image
analysis models achieve satisfactory performances, clinical experts are
needed to assist in the pre-processing of medical images, which not
only greatly consumes the very limited social medical resources, but
also make the rapid deployment of deep-learning-based CAD systems
in clinical practice become difficult. (ii) Hard to reproduce: We notice
that a model that performs well on a specific medical image dataset of a
medical institution often difficult to achieve similar performances in the
same medical image analysis task of other medical institutions using the
same types of medical images (whether the model is re-trained or used
directly); we believe an important reason of this failure is the lack of
homogenized pre-processing, i.e., due to the personnel and information
barriers between different medical institutions, it is difficult for other
medical institutions to conduct the same pre-processing operations on
the new medical image datasets, so the difference in data quality
after pre-processing inevitably leads to the different qualities of model
training and inference.

In order to verify our argument on the hard-to-reproduce problem
and the need of homogenized pre-processing in deep-learning-based
medical image analysis tasks, preliminary experimental studies on pe-
diatric pneumonia classification are conducted. Specifically, a widely
used ResNet model is first applied on a well pre-processed public
pediatric pneumonia X-ray image dataset from Guangzhou Women and
Children’s Medical Center [3] (image examples are shown in Fig. 1(a)–
(c)), resulting in a classification F1-score at around 0.82; however,
when the ResNet model (with the same setting) is then applied on
another pediatric pneumonia X-ray images without pre-processing (see
Fig. 1(d)–(f)) from another medical institution, Hainan Women and
Children’s Medical Center, the classification F1-score is dramatically
dropped down to around 0.64; finally, by conducting the key region
selection pre-processing on the latter dataset (see Fig. 1(g)–(i)), the F1-
score rises back to around 0.68. This demonstrates that an important
reason (certainly not the only reason) for the hard-to-reproduce prob-
lem (i.e., a good medical image analysis model is difficult to reproduce
effectively in other medical institutions) is that the quality of medical
images used for model training and inference in different medical
institutions is different, and these quality differences are largely (but
not completely) caused by the differences in pre-processing operations
between them; so when the quality difference of their images is re-
duced, the performance difference between them can also be effectively
reduced (e.g., the performance gap in the above example is narrowed
from 0.18 to 0.14 because the quality gap is narrowed). Consequently,
if homogenized medical image pre-processing can be achieved be-
tween different medical institutions, it will greatly reduce the image
quality difference, thus alleviating the hard-to-reproduce problem of
deep-learning-based CAD systems in clinical practices. However, as
mentioned above, achieving high-quality medical image pre-processing
heavily relies on the assistance of clinical experts, and due to the
different subjective judgments, experiences and expertise of different
experts, it is very difficult for different medical institutions to achieve
high-quality and homogenized medical image pre-processing.

Motivated by these observations, in this paper, we propose a Deep-
Reinforcement-Learning-based task-oriented Homogenized Automatic
Pre-processing (Abbreviated as DRL-HAPre) framework to overcome
the above two problems and achieve painless (resolving the hard-to-
deploy-quickly problem) and accurate (alleviating the hard-to-
reproduce problem) medical image analysis in clinical practices. Specif-
ically, DRL-HAPre framework mainly consists of a task network and
an auxiliary network, where the task network is a deep model used
to achieve the corresponding medical image analysis tasks (e.g., we
2

Fig. 1. (a)–(c) are three examples of pre-processed pediatric pneumonia X-ray images
in a public dataset provided by Guangzhou Women and Children’s Medical Center [3],
(d)–(f) are examples of pediatric pneumonia X-ray images collected from Hainan
Women and Children’s Medical Center without pre-processing, (g)–(i) are results of
conducting key region selection pre-processing on (d)–(f).

can use ResNet for classification tasks, U-Net for Segmentation tasks,
etc.), and the auxiliary network is a policy network that aims to auto-
matically and adaptively select the optimal pre-processing operations
for the input medical images according to different analysis tasks. To
ensure the pre-processing policies generated by the auxiliary network is
optimal for the input image on the given task, the deep-reinforcement-
learning-based policy gradient method is utilized to interactively train
the auxiliary network using rewards that are calculated based on the
results of the task network. Therefore, DRL-HAPre framework has the
following advantages: (i) the pre-processing operations conducted in
DRL-HAPre framework are fully automatic, i.e., do not need the assis-
tance of clinical experts, so it can overcome the hard-to-deploy-quickly
problem and make the deployment of CAD systems painless in pre-
processing; (ii) when applying a well trained DRL-HAPre framework
to other medical institutes for the same type of medical image analysis
tasks (i.e., cross-source applications), since the same auxiliary network
is used to generate pre-processing policies for new data, DRL-HAPre can
alleviate the hard-to-reproduce problem using task-oriented homoge-
nized pre-processing and will achieve much more stable cross-source
performances than the conventional deep solutions.

To verify the effectiveness and advantages of the proposed DRL-
HAPre framework, we continue to use the pediatric pneumonia clas-
sification task as a study case, and further develop a homogenized
automatic pre-processing model based on the DRL-HAPre framework
to realize the automatic pre-processing of key region selection (called
HAPre-KRS) in the pneumonia image classification task. Specifically,
given an input medical image, HAPre-KRS first estimates its original
classification loss using a ResNet-based task network; then an unsuper-
vised deep detection network is used as the auxiliary network to find its
key region, and the detected key regions are send into the task network
to obtain an augmented loss; finally, a reward is estimated (based on
the difference between the original and augmented loss) and fed-back
to learn the auxiliary detection network using policy gradient [4].

In summary, the main contributions of this work are as follows:

• We identify the challenging hard-to-deploy-quickly and hard-to-
produce problems in the existing pre-processing solutions, and
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propose a deep-reinforce- ment-learning-based task-oriented ho-
mogenized automatic pre-processing (DRL-HAPre) framework to
overcome these two problems and help achieve painless (i.e., due
to automation) and accurate (due to Homogenized quality en-
hancement) medical image analysis in clinical practices.

• We further develop a homogenized automatic pre-processing
model based on the DRL-HAPre framework to realize the auto-
matic pre-processing of key region selection (called HAPre-KRS)
in the pneumonia image classification task.

• Extensive experimental studies are conducted on three pediatric
pneumonia classification datasets with different image qualities,
and the results show that: (i) There does exist a hard-to-reproduce
problem in clinical practices and the fact that having different
medical image qualities in different medical institutes is an im-
portant reason for the existing of hard-to-reproduce problem, so
it is compelling to propose homogenized automatic pre-processing
method. (ii) The proposed HAPre-KRS model and DRL-HAPre
framework greatly outperform three kinds of state-of-the-art base-
lines (i.e., pre-processing, attention and pneumonia baseline), and
the lower the medical image quality, the greater the improve-
ments of using our HAPre-KRS model and DRL-HAPre frame-
work. (iii) With the help of homogenized pre-processing, HAPre-
KRS (and DRL-HAPre framework) can greatly avoid performance
degradation in real-world cross-source applications (i.e., thus
overcoming the hard-to-reproduce problem).

The rest of this paper is organized as follows. Section 2 presents
he related work and clarify the differences between our work and
he references. The detailed methodology of the proposed DRL-HAPre
ramework and HAPre-KRS model is given in Section 3, which is
ollowed by the experimental studies in Section 4. Section 5 discusses
he social impact of the proposed works, while the conclusions and
uture works are given in Section 6.

. Related work

In this section, we briefly discuss the closely related works on med-
cal image analysis, deep reinforcement learning, and pre-processing.

edical image analysis. Recently, deep learning technology has been
ncreasingly applied in various fields of computer-aided diagnosis to
elp doctors analyze medical images. For example, in medical image
lassification, Yang et al. [5] propose a new training strategy called
eep tree training, which is used to jointly train a series of networks
onstructed from the hidden layers of CNN in a hierarchical manner to
elp label medical images with some quality distortion. Devi et al. [6]
ropose an architecture having a three-stream network to better extract
anual and automatic features from images to more accurately identify

ung cancer. Zlocha et al. [7] use the feature pyramid network as the
ackbone of RetinaNet [8] and weak labels as auxiliary supervision to
chieve the detection of lesions in CT images. Zhao et al. [9] use a
eature pyramid network to extract local and global features of different
eceptive fields to achieve automatic detection for cancer metastasis
rom whole slide images. And Xu [2] et al. propose a new deep model
-Net, which incorporates an additional expansive path into U-Net to

mport an extra supervision signal and obtain a more effective and
obust image segmentation by dual supervision to achieve a more
ccurate medical image segmentation. Yu [10] et al. develop a new
arallel dilated convolution module, which uses dilated convolutions
o systematically aggregate multi-scale contextual information without
osing resolution for dense segmentation to improve the segmentation
ccuracy. Most deep learning methods can only work on specific medi-
al image analysis tasks, but our proposed framework is not limited by
his. Although this paper only uses the DRL-HAPre framework for the
ediatric pneumonia classification task to prove the effectiveness of our
ramework in homogenized automatic pre-processing, our framework
3

can be applied to other medical image analysis tasks by substituting
different auxiliary and task networks.

Deep reinforcement learning. Inspired by the success of many deep
reinforcement learning algorithms in the gaming domain [11], deep
reinforcement learning has also been applied to medical image analysis.
Akrout et al. [12] propose to integrate a CNN classification model
with a reinforcement-learning-based question answering agent for skin
disease classification. To better identify underlying conditions, an agent
learns how to ask patients if they have symptoms using the visual in-
formation provided by CNN and answers to the questions asked. Cheng
et al. [13] study how to use semantic segmentation to generate a hard
attention map that improves classification performance. Segmentation
agents generate segmentation templates, which are trained through
a reinforcement learning framework, and the reward is classification
accuracy. To solve the problem of insufficient data in medical image
classification, Ye et al. [14] study the synthetic sample selection prob-
lem for improved image classification, training a deep reinforcement
learning agent to select synthetic images containing reliable informa-
tive features through proximal policy optimization, and classification
accuracy as a bonus to ensure the quality of synthetic images for data
augmentation purposes. Wang et al. [15] distinguish between benign
and malignant breast nodules by proposing a multi-modal network
combining four different types of ultrasonography. Similar to our work,
Xu et al. [16] propose a deep selective attention method that aims to
select valuable regions from raw images for classification. They develop
a decision network to decide where to crop and whether the cropped
patch is necessary for classification, then the classification network is
trained on these selected patches and then provides feedback to the de-
cision network to update its selection policy. Compared with the above
methods, our method has two main differences: (i) The designed policy
gradient solution in our work is different,its training procedure is much
simpler and requires less supervisory information. (ii) We work on a
different task: to our knowledge, we are the first deep reinforcement
learning work that focuses on the importance of homogeneous pre-
processing and use homogeneous automatic pre-processing to improve
the medical image analysis models’ performances.

Pre-processing. Pre-processing via image transformations has been
used to improve generalization since the inception of convolutional
networks. These works are similar to data augmentation. Following
AlexNet [17], they have become a standard part of training pipelines.
For object classification tasks, the transformations are selected to avoid
changing the semantic category, i.e. translations, scales, color shifts,
etc. In contrast to deep learning, data augmentation is rarely used in
reinforcement learning. For example, Laskin et al. [18] propose a rein-
forcement learning model with augmented data by pre-processing oper-
ations and introduce two new data augmentations—random translation
and random amplitude scale, and they prove that data augmentations
alone can significantly improve the data efficiency and generaliza-
tion of reinforcement learning methods operating from pixels, without
any changes to the underlying reinforcement learning algorithm. Qin
et al. [19] propose an automatic enhancement algorithm for medical
image segmentation based on deep reinforcement learning so that the
data enhancement strategy network is fed back and adjusted through
the performance difference of the segmentation network before and
after data enhancement to obtain the optimal data enhancement policy.
Yarats et al. [20] use standard image transformations through pre-
processing to perturb input observations as well as regularizing the
Q-function learned by the critic so that different transformations of the
same input image have similar Q-function values and further study im-
age augmentation in sample-efficient reinforcement learning. However,
these works mainly focus on how to improve the model’s performance
by using pre-processing, without paying attention to the necessity of
automatic homogenization pre-processing. We are the first work aiming
to discover the importance of homogenization pre-processing for the
rapid application of CAD systems in different medical institutions,
and use deep reinforcement learning to find the best homogenization
automatic pre-processing for the corresponding task.
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Fig. 2. Overview of our deep-reinforcement-learning-based task-oriented homogenized
automatic pre-processing (DRL-HAPre) framework.

3. A deep-reinforcement-learning-based task-oriented homogenize
automatic pre-processing framework

There are two major problems in existing medical image analysis
tasks: first, medical images need to be pre-processed to improve their
accuracy, which is time- and labor-consuming, and which requires
different pre-processing according to different tasks, resulting in poor
generalization. Besides, for some tasks with a small amount of data, it
is necessary to train on similar medical images with a large amount of
data before testing, but different data sources will reduce the model’s
accuracy and robustness. To solve the above problems, we propose
a deep-reinforcement-learning-based task-oriented homogenized auto-
matic pre-processing framework for medical image analysis, which is
called DRL-HAPre. As shown in Fig. 2, DRL-HAPre framework is built
based on policy gradients in deep reinforcement learning, which mainly
consists of an auxiliary network for automatically selecting suitable pre-
processing operations and a task network for achieving specific medical
analysis tasks.

Specifically, this framework first utilizes the auxiliary network to
automatically and adaptively select some pre-processing operations
for the input images; the processed images are input into the task
network for fine-tuning; then a reward is constructed by comparing the
difference of task accuracies before and after pre-processing; finally, the
reward is fed back to the auxiliary network to optimize the auxiliary
network. Through such interactive training optimization, the auxiliary
network is gradually able to automatically and adaptively select the
optimal pre-processing operations (i.e., most conducive to improving
the performance of the corresponding medical image analysis task) for
each input image according to different medical image analysis tasks.
Therefore, the DRL-HAPre framework has the following advantages: (i)
the pre-processing operations conducted in the DRL-HAPre framework
are fully automatic, i.e., do not need the assistance of clinical experts,
so it can overcome the hard-to-deploy-quickly problem and make the
deployment of CAD systems painless in pre-processing; (ii) when apply-
ing a well trained DRL-HAPre framework to other medical institutes
for the same type of medical image analysis tasks (i.e., cross-source
applications), since the same auxiliary network is used to generate
pre-processing policies for new data, DRL-HAPre can alleviate the hard-
to-reproduce problem using task-oriented homogenized pre-processing
and achieve much more stable cross-source performances than the
conventional deep solutions.

In this paper, to show the advantages of the DRL-HAPre framework,
we focus on the task of pneumonia classification and further propose a
homogenized automatic pre-processing model based on the DRL-HAPre
framework to achieve the automatic pre-processing of key region se-
lection in pneumonia image classification tasks, the resulting model
is called HAPre-KRS. Specifically, as shown in Fig. 3, HAPre-KRS uses
a pneumonia classification network (with parameters 𝜃𝑐) as the task
network and a detection network (with parameters 𝜃𝑑) as the auxiliary
network. Please note that HAPre-KRS is a specific model that is de-
signed based on the DRL-HAPre framework to achieve homogenized
automatic key region selection and to enhance the performances of
4

deep-learning-based pneumonia classification; to achieve other kinds
of homogenized automatic pre-processing (e.g., zoom, mask, crop, etc.)
in other medical image analysis tasks (e.g., segmentation or detection),
the task network should be replaced by a network that matches the
corresponding task properly (e.g., U-Net for segmentation tasks and
RCNN for detection tasks), while the auxiliary network should be
replaced by a new deep network which can help the agent to learn
proper policies to achieve the corresponding pre-processing operations
in a homogenized and automatic way.

As shown in Fig. 3, the detailed procedure of HAPre-KRS is as
follows. First, the original chest X-ray images are input into the clas-
sification network to get the original classification loss 𝑜𝑟𝑖. Then, the
obtained key areas from the detection network are input to the classi-
fication network to get the augmented classification loss 𝑎𝑢𝑔 . Finally,
the framework can be further divided into two different update policies
and the rewards according to the difference 1 between the original
classification loss 𝑜𝑟𝑖 and the augmented classification loss 𝑎𝑢𝑔 after
getting a key area from the detection network. On the one hand, if the
difference 1 is less than 0, the key area is valid, and then returns to
the detection network to continue training. On the other hand, if the
difference 1 is at least 0, then the key area needs to be updated. We
first enlarge the key area separately by 𝛼 times and shrink it by 𝛼 times
to explore the appropriate key area, that is, we input them into the
classification network to get the new classifications 𝑒𝑥𝑝𝑎𝑛𝑑 and 𝑠ℎ𝑟𝑖𝑛𝑘,
respectively. The new key area chooses the one with the minimum loss.
See Algorithm 1 for details. Note that although simple pre-processing
actions (i.e., shrink and expand) are selected here, actually different
pre-processing actions can be selected for different tasks. After that,
we get the new difference between the minimum loss and the original
enhanced classification loss, and then the weighted sum of the new
difference and the difference 1 is fed back to the detection network
as a reward to continue training.

3.1. Policy gradient training

Following the policy gradient context [4], our detection network is
seen as a policy, the image batch is treated as a state 𝑠𝑡, and the key-
area-based direct feedback, expanded or shrank by 𝛼 times, is framed
as the action 𝑎𝑡. In detail, at each 𝑡th training step, the classification
network receives the optimal key area as the input and outputs a
reward signal 𝑅𝑡. To accomplish this, our objective is to maximize the
expected reward 𝐽 (𝜃𝑑 ) and find the optimal detection policy:

𝐽 (𝜃𝑑 ) = 𝐸𝑑 (𝑎𝑡; 𝜃𝑑 )[𝑅𝑡], (1)

where 𝐸𝑑 (𝑎𝑡; 𝜃𝑑 ) is the expected reward concerning the key area after
taking an action 𝑎𝑡 when the policy model has been parameterized with
𝜃𝑑 . The policy is learned through back-propagation, which requires
the definition of the gradient of the expected reward for the model
parameters. Following the REINFORCE rule [4], the gradient can be
defined as:

▽𝜃𝑑 𝐽 (𝜃𝑑 ) = 𝐸𝑑 (𝑎𝑡; 𝜃𝑑 )[▽𝜃𝑑 log(𝑃 (𝑎𝑡|𝑠𝑡; 𝜃𝑑 )) ⋅ 𝑅𝑡]. (2)

The expected reward cannot be estimated and requires an approx-
imation. As is common practice in the traction of policy gradient,
we can achieve such approximation using the negative log-likelihood
loss, which is differentiable for the model parameters, and can be
properly weighted by the reward signal to obtain the detection policy
loss presented as follow:

𝑑 = 𝐹𝐿(𝑎𝑡, 𝑎𝑡) ⋅ 𝑅𝑡, (3)

where 𝑎𝑡 ∼ 𝜋 ∼ 𝑃 (𝑎𝑡|𝑠𝑡; 𝜃𝑝), and 𝐹𝐿 is the focal loss:

𝐹𝐿 = −
𝑁
∑

(1 − 𝑝(𝑥𝑖))𝛾 log(𝑝(𝑥𝑖)), (4)

𝑖=1
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Fig. 3. Overview of a homogenized automatic pre-processing model based on DRL-HAPre framework to achieve the automatic pre-processing of key region selection in pneumonia
image classification tasks (abbreviated as HAPre-KRS).
Algorithm 1 Deep Reinforcement Learning with Task-Oriented Homogenized Automatic Pre-processing Framework (DRL-HAPre)
Input: Training steps 𝑇 ; training original images and labels (𝑋, 𝑌 ); classification loss function using cross-entropy loss 𝑐 and detection loss function

using focal loss 𝑑 ; learning rates (𝛼𝑐 , 𝛼𝑑 ); the coordinate value of bounding box (i.e., key area) from the detection network 𝐵𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥); classification and detection networks (𝑀𝑐 ,𝑀𝑑 ) parameterized with (𝜃𝑐 , 𝜃𝑑 ).

Output: 𝑀𝑐 and 𝑀𝑑 .
1: Initialize models parameters 𝜃𝑑 and 𝜃𝑐 by the ImageNet dataset
2: for 𝑡 = 1,… , 𝑇 do
3: Sample a training batch (𝑥, 𝑦) from the (𝑋, 𝑌 ) pool
4: Get the original classification loss 𝑜𝑟𝑖 = 𝑐 (𝑀𝑐 (𝑥𝑡), 𝑦𝑡)
5: Get a key area 𝑥𝑘𝑒𝑦 of 𝑥𝑡 from the detection network and its coordinate value 𝐵𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
6: Calculate a new classification loss 𝑎𝑢𝑔 = 𝑐 (𝑀𝑐 (𝑥𝑘𝑒𝑦), 𝑦𝑡)
7: Calculate the difference between the two classification losses 1 = 𝑎𝑢𝑔 − 𝑜𝑟𝑖
8: if 1 < 0
9: Determine the optimal key area 𝐵𝐵𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐵𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

10: Calculate policy gradient reward 𝑅𝑡 = 𝑒1

11: Calculate a detection loss 𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑑 (𝑀𝑑 (𝑥𝑘𝑒𝑦),𝑀𝑑 (𝐵𝐵𝑜𝑝𝑡𝑖𝑚𝑎𝑙)) ⋅ 𝑅𝑡
12: Update 𝑀𝑑 with the perform gradient descent update 𝜃𝑑 ← 𝜃𝑑 − 𝛼𝑑▿𝜃𝑑𝑢𝑝𝑑𝑎𝑡𝑒
13: Update 𝑀𝑐 with the classification network 𝜃𝑐 ← 𝜃𝑐 − 𝛼𝑐▿𝜃𝑐𝑢𝑝𝑑𝑎𝑡𝑒
14: else
15: Expand the key area by 𝛼 times and shrink the key area by 𝛼 times to get the classification 𝑒𝑥𝑝𝑎𝑛𝑑 and 𝑠ℎ𝑟𝑖𝑛𝑘, respectively
16: Calculate a new classification loss 𝑛𝑒𝑤 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑒𝑥𝑝𝑎𝑛𝑑 ,𝑠ℎ𝑟𝑖𝑛𝑘)
17: Choose the action and determine the optimal key area 𝐵𝐵𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = {𝐵𝐵𝑒𝑥𝑝𝑎𝑛𝑑 , 𝐵𝐵𝑠ℎ𝑟𝑖𝑛𝑘}
18: Calculate a new difference 2 = 𝜆 ⋅ (𝑛𝑒𝑤 − 𝑎𝑢𝑔) + (1 − 𝜆) ⋅1
19: if 2 < 0
20: Calculate policy gradient reward 𝑅𝑡 = 𝑒2

21: else
22: Calculate policy gradient reward 𝑅𝑡 = 2
23: end if
24: Calculate a new detection loss 𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑑 (𝑀𝑑 (𝑥𝑘𝑒𝑦),𝑀𝑑 (𝐵𝐵𝑜𝑝𝑡𝑖𝑚𝑎𝑙)) ⋅ 𝑅𝑡
25: Update 𝑀𝑑 with the perform gradient descent update 𝜃𝑑 ← 𝜃𝑑 − 𝛼𝑑▿𝜃𝑑𝑢𝑝𝑑𝑎𝑡𝑒
26: Update 𝑀𝑐 with the classification network by the optimal key area 𝜃𝑐 ← 𝜃𝑐 − 𝛼𝑐▿𝜃𝑐𝑛𝑒𝑤
27: end if
28: end for
where (1 − 𝑝(𝑥𝑖))𝛾 is a modulating factor with tunable focusing pa-
rameter 𝛾 ≥ 0. By using pixel-wise focal loss, we can preserve spatial
information of the deviation of 𝑃 (𝑎𝑡|𝑠𝑡) from 𝑎𝑡. We then update 𝜃𝑑 by
computing ▽ 𝐿. Thus, the classification network parameters 𝜃 are
5

𝜃𝑑 𝑐
updated with gradient descent by using the cross-entropy loss 𝐶𝐸 =
−
∑𝑁

𝑖=1 𝑝(𝑥𝑖) log(𝑞(𝑥𝑖)) between the classification of the key area samples
and the original target labels. In our experiments, we perform stochastic
gradient update for both 𝜃 and 𝜃 at each batch step.
𝑑 𝑐
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Table 1
Datasets information. BP: bacterial pneumonia, VP: viral pneumonia, NP: normal, and MP: manual process.

Datasets Images BP VP NP MP Ages Size Source

Ped-Pneumonia 5856 2780 1493 1583 ✓ 1–5 [384, 2916] × [127, 2713] Guangzhou Women and Children’s Medical Center
RSNA-Pneumonia 3811 1962 1849 % All-age 1024 × 1024 National Institutes of Health Clinical Center
Ours 3742 1088 295 2359 % 0–14 [512, 3408]×[512, 3032] Hainan Women and Children’s Medical Center
3.2. Task-oriented homogenized automatic pre-processing

The implementation of the overall HAPre-KRS algorithm is sum-
marized in Algorithm 1. The design of the reward is crucial to the
convergence of the detection network. Using the change in training loss
as a reward, as is done in neural architecture search [21], results in
a weak reward signal hardly discernible from the expected changes in
loss during training. Similarly, approximating rewards with a critic net-
work introduces unnecessary overhead and slows down convergence.
We propose a stable reward 𝑅𝑡 referring to [13].

We first feed the original image to the classification network to get
the original classification loss 𝑜𝑟𝑖 and then feed it to the detection
network to get the key area and the augmented classification loss 𝑎𝑢𝑔 .
After that, the difference 1 between the two classification losses is
calculated, which is defined as:

1 = 𝑎𝑢𝑔 − 𝑜𝑟𝑖. (5)

Finally, we design a comprehensive feedback reward mechanism that
can be divided into two updated strategies in detail according to the
difference. The first update strategy is that the difference 1 between
𝑜𝑟𝑖 and 𝑎𝑢𝑔 is less than 0, which means that the key area obtained
by the detection network is effective. We directly feed this key area
and the detection loss back to the detection network and classification
network to continue training our model. At this time, it is necessary
to give the model a reward as positive feedback, so that the detection
network does not need to make major changes; but 1 is less than 0,
and direct feedback to the model will make the optimization goal of
detection network confusing. Therefore, we need to ensure that (i) the
loss weight of the detection network cannot be a negative number when
1 is less than 0, and (ii) the smaller the 1, the smaller the weight,
that is, the smaller the penalty for the detection network. We find that
using an exponential function is the most efficient; the policy gradient
reward function is defined as:

𝑅 = 𝑒1 . (6)

Otherwise, if the difference 1 is at least 0, then the key area
obtained by the detection network is not optimal, and another update
strategy is required. First, we expand the key area by 𝛼 times and shrink
it by 𝛼 times simultaneously to get a new optimal key area. Specifically,
we input them, i.e., separately expanded key area and shrank key
area, into the classification network again to obtain 𝑒𝑥𝑝𝑎𝑛𝑑 and 𝑠ℎ𝑟𝑖𝑛𝑘.
The smaller between the two is the new key area and new enhanced
classification loss 𝑛𝑒𝑤. Then, the new difference 2 between the new
enhanced classification loss and the original enhanced classification
loss, plus the weight of the original difference to get the new reward.
Finally, the new classification loss 𝑛𝑒𝑤 and the new difference 2 are
respectively returned to the classification network and the detection
network to continue training our model. Similarly, since the updated
key area is effective, this difference 2 is also less than 0. To ensure
positive feedback to the model, if 2 is less than 0, an exponential
function is also used to define the reward function, otherwise, it is
direct feedback to the model. Therefore, the final difference and the
reward function are formulated as:

2 = 𝜆(𝑚𝑖𝑛(𝑒𝑥𝑝𝑎𝑛𝑑 ,𝑠ℎ𝑟𝑖𝑛𝑘) − 𝑎𝑢𝑔) + (1 − 𝜆)1, (7)

𝑅 =

{

𝑒2 𝑖𝑓 2 < 0,
(8)
6

2 𝑒𝑙𝑠𝑒 2 ≥ 0.
Fig. 4. The two images in the first column are examples of pre-processed pediatric
pneumonia X-ray images in the Ped-Pneumonia dataset, whose image quality is high.
Those in the second column are examples of the RSNA-Pneumonia dataset, whose
quality is lower than Ped-Pneumonia but still better than ours (i.e., with medium
quality). The images in the third column are examples of our dataset, which is not
pre-processed and with low quality.

The resulting reward signal is related to key area quality, rather
than reflecting the stochasticity in the training of the classification
network.

The advantages of our model are as follows: (i) We do not need
any labels outside the classification labels. (ii) We use the key area
as input to the classification network, which can pay attention to
important information while filtering irrelevant information. This is
better than directly adding an attention module, because (i) the soft
attention is not robust and may focus on other interfering informa-
tion; (ii) pneumonia infects multiple regions of the terminal airway,
alveoli, and interstitium, and our approach enables the classification
network to enforce a focus on the key area; and (iii) our entire training
process is online, which can improve the accuracy of both detection
network and classification network to ensure homogeneous automatic
pre-processing.

4. Experiments

Extensive experiments have been conducted to evaluate the pro-
posed DRL-HAPre framework by comparing the HAPre-KRS model with
the state-of-the-art baselines on two public datasets (one is well pre-
processed and the other is without pre-processing) and a pediatric
pneumonia dataset collected by ourselves.

4.1. Datasets

Three pediatric pneumonia X-ray image datasets are used in this
work, where 70% of the contained images are used as training set, 10%
as validation set, and 20% for testing. The detailed information of these
three datasets is presented in the followings, the statistical results are
summarized in Table 1, and some examples are shown in Fig. 4.

Ped-Pneumonia [3] is a public pediatric pneumonia dataset of children
aged 0 − 5 from Guangzhou Women and Children’s Medical Center.
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This dataset contains 1583 normal images, 2780 bacteria pneumonia,
and 1493 viruses pneumonia, with widths ranging from 384 to 2916
and heights ranging from 127 to 2713. It has been pre-processed by
professionals; so, as shown in Fig. 4, its images are with less noise,
higher contrast, and a more uniform distribution of types than another
two datasets. Consequently, we use it to validate the performances of
our method and the baselines on high quality data. However, the
pre-processing needs assistance from clinical experts, so it is time-
consuming and labor-intensive and will encounter the hard to deploy
quickly and hard to reproduce problems.

RSNA Pneumonia Detection Challenge1 (RSNA-Pneumo- nia) is a
ublic pneumonia dataset from the National Institutes of Health Clin-
cal Center. It contains 26,684 images of size 1024 × 1024 (i.e., 6012
neumonia images and 20,672 normal ones). This dataset is a hybrid
ataset, where some of the images are well-pre-processed while some
thers are without or with limited pre-processing; As Shown in Fig. 4,
he latter images contain some interference so its image quality is less
han Ped-Pneumonia dataset but still better than the dataset collected
y ourselves. Consequently, we randomly select 3811 images (which
re without or with limited pre-processing) as the medium quality
ataset in our experiments.

ur dataset is a real pediatric pneumonia dataset of children aged
− 14 collected by ourselves from July 2016 to September 2021 at
omen and Children’s Medical Center. It contains 2359 normal images,

088 bacteria pneumonia, and 295 viruses pneumonia, with widths
anging from 512 to 3408, and heights from 512 to 3032. We do not
onduct any pre-processing on this dataset, so the images contain a
ot of interference information (e.g., the doctor’s hand to immobilize
hildren), which are exactly the real images obtained in daily clinical
ractices. As shown in Fig. 4, this dataset has the lowest image quality,
o we use it as the low quality dataset in our work.

.2. Experimental settings

Our experiments are implemented using PyTorch and run on a
VIDIA GeForce GTX 2080Ti GPU and evaluated on the above three
atasets using the same experimental settings. The implementation de-
ails of the proposed HAPre-KRS are as follows. The model is optimized
sing Adam [22] as the optimizer, where the learning rates of the
lassification network and detection agent network are set to 1𝑒−5 and
𝑒−6, respectively, and the batch size is set to 1. All images are scaled
o 640 × 640, and the scaled images are randomly flipped vertically
ith a probability of 0.5.

To show the effectiveness of our models, we use the widely adopted
ccuracy (Acc), precision (Pre), recall (Rec), and F1 score (F1) as
he evaluation metrics. Specifically, accuracy measures the percentage
f correctly classified samples out of the total number of samples.
recision is the percentage of true positive samples of all predicted
ositive samples. Recall measures the probability that positive samples
re correctly classified as positive. F1 score is the harmonic mean of
PV and Sensi, which thus can evaluate the model’s performances more
omprehensively from the perspectives of both precision and recall.
he higher the values of these metrics, the better the performance.
ormally,

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

, (9)

𝑃𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (10)

𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (11)

𝐹1 =
2 ∗ (𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐)
(𝑃𝑟𝑒 + 𝑅𝑒𝑐)

= 2 ∗ 𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (12)

1 Link: https://www.kaggle.com/c/rsna-pneumonia-detection-challenge.
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where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 denote true positive (the number of posi-
ive samples that are correctly classified as positive), true negative (the
umber of negative samples that are correctly classified as negative),
alse positive (the number of negative samples that are incorrectly clas-
ified as positive), and false negative (the number of positive samples
hat are incorrectly classified as negative), respectively.

.3. Baselines

In order to show the superior performances of the proposed DRL-
APre framework achieved by homogenized automatic pre-processing,
e compare the designed HAPre-KRS model with three kinds of state-
f-the-art baselines, which are closely related to this work, i.e., pre-
rocessing, attention, and pneumonia classification baselines. For a
air comparison, ResNet [23] is used as the backbone of our proposed
RL-HAPre and the pre-processing and attention-based baselines.

Specifically, since our work proposes to use deep reinforcement
earning to overcome the existing two problems of pre-processing so-
utions and achieve homogenized automatic pre-processing, we first
ompare our work with five state-of-the-art deep learning or reinforce-
ent learning based pre-processing solutions. (i) Random Aug: it is a
re-processing strategy that randomly applies various commonly used
ata augmentation methods to each image. (ii) Cutout [24]: this work
onducts a pre-processing to randomly cut out parts of the sample,
here the pixel values are set as 0. (iii) Cutmix [25]: it is an advanced
ersion of Cutout, which also randomly cuts out parts of a given
ample but randomly fills the cut area with pixel values of the same
rea in another data in the training set instead of assigning the pixel
alues as 0. (iv) Mixup [26]: it proposes to mix two random samples
ccording to a pre-defined ratio (i.e., add proportionally) in the pre-
rocessing. (v) DRL-DA [19]: it is a deep reinforcement learning based
ata augmentation solution, where DRL is used to explore the most
ffective sequence of pre-processing operations for each image.

Furthermore, since the functionality of key region selection pre-
rocessing in our proposed HAPre-KRS is very similar to the widely
sed attention mechanism (i.e., make the learning of deep models focus
n some key areas), we further compare our work with two state-of-
he-art attention methods, CBAM [27] and DANet [28]. CBAM uses

convolutional block attention module to sequentially infer channel
nd spatial attention maps, which are then multiplied to the input
eature map for adaptive feature refinement. DANets are dual attention
etworks that are proposed to combine parallel position and channel at-
ention modules with the traditional dilated FCN to respectively model
he semantic inter-dependencies in spatial and channel dimensions.

Finally, as the experiments are performed and the results are eval-
ated on the pediatric pneumonia classification tasks, three state-of-
he-art deep learning based pneumonia classification solutions, DRE-
et [29], Two-Stage [30], and MAG-SD [31], are also selected as

he baselines. (i) DRE-Net is a multi-scale based classification model,
hich introduces feature pyramid network [32] to extract features with
ifferent scales and combine the multi-scale features to improve the
erformances of pneumonia classification tasks. (ii) Two-Stage uses a
etection network to focus on important areas first and then perform
ine-grained classification tasks. (iii) MAG-SD is designed to resolve
he problem of data imbalance, which uses multi-scale and attention
echniques to achieve attention guided augmentations and obtain a new
rediction loss based on a soft distance regularization.

.4. Main results

Table 2 shows the results of the proposed HAPre-KRS model and the
tate-of-the-art pre-processing, attention, and pneumonia classification
aselines on three pediatric pneumonia X-ray image datasets, Ped-
neumonia, RSNA-Pneumonia, and our dataset, where the medical

mages are with respectively high, medium and low quality.

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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Table 2
The results (in %) of applying the proposed HAPre-KRS and the state-of-the-art baselines on three pediatric pneumonia classification tasks on three different datasets, where the
best result is bold, the second best one is underlined, and High, medium, and Low represents the data quality of the corresponding databases.

Model Ped-Pneumonia (High) RSNA-Pneumonia (Medium) Ours (Low)

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

ResNet-18 [23] 88.30 82.33 82.67 82.40 74.93 74.47 75.04 74.78 84.92 65.01 65.00 64.53

Random Aug 88.38 82.35 82.68 82.43 75.01 74.51 74.72 74.55 85.03 63.01 64.14 63.22
Cutout [24] 88.46 82.44 82.61 82.46 75.11 74.68 74.59 74.63 84.80 62.91 64.24 63.30
Cutmix [25] 88.41 82.38 82.70 82.47 75.07 74.53 74.80 74.59 84.91 62.88 64.52 63.27
Mixup [26] 88.44 82.37 82.65 82.41 74.98 74.51 74.77 74.58 84.74 62.21 64.30 63.13
DRL-DA [19] 88.48 82.40 82.71 82.50 75.27 75.57 74.82 74.68 84.08 62.29 63.26 62.53

CBAM [27] 88.50 81.63 82.91 82.53 75.24 75.51 75.20 74.94 85.25 62.51 66.26 63.68
DANet [28] 88.53 82.48 82.69 82.63 75.63 75.70 76.62 75.15 85.17 65.48 64.91 65.11

DRE-Net [29] 87.82 81.83 82.36 82.04 75.40 76.72 75.04 75.86 85.25 64.78 64.23 64.46
Two-Stage [30] 88.43 82.21 82.47 82.29 75.66 74.85 75.52 75.22 85.30 63.77 65.73 64.33
MAG-SD [31] 88.47 82.53 82.73 82.64 77.05 76.64 78.28 77.32 85.13 65.53 65.85 65.37

HAPre-KRS 88.84 82.57 83.11 82.79 78.22 79.36 79.85 79.50 86.48 68.05 69.26 68.34
Improvement 0.31 0.04 0.20 0.15 1.17 2.64 1.57 2.18 1.18 2.70 3.00 2.97
As shown in Table 2, we can first observe that the performances
f HAPre-KRS and the baselines are all very different among the three
atasets. For example, the F1-scores of the 11 baselines are all around

0.82 on the well-preprocessed high-quality dataset, Ped-Pneumonia;
however, when these methods are applied on another two datasets
with lower image quality (without pre-processing), their F1-scores
dramatically decrease to around 0.75 and 0.64 on RSNA-Pneumonia
and our dataset, respectively. This finding proves the existence of the
hard-to-reproduce problem in clinical practices, i.e., models with good
performances in a medical institution are not guaranteed to achieve
satisfactory performances often in the same medical image analysis task
of other medical institutions, because the lower medical image quality,
the worse the deep model’s performances.

Furthermore, we also find that conducting the key region selection
pre-processing can greatly increase the ResNet model’s performances
on RSNA-Pneumonia (from 0.7478 to 0.7950 in F1) and our dataset
(from 0.6453 to 0.6834 in F1), while the increase on Ped-Pneumonia
is very marginal (only from 0.8240 to 0.8279 in F1). We believe this
is because the key region selection pre-processing effectively increases
the quality of medical images in RSNA-Pneumonia and our dataset,
which thus makes it easier for the deep model to learn classification
features from the images, however, as the images in Ped-Pneumonia
have been well-preprocessed, introduce additional pre-processing will
not significantly enhance the image quality and also the deep model’s
performances. Consequently, this sufficiently demonstrates that having
different medical image qualities in different medical institutes is an
important reason (but certainly not the only reason) for the existence
of the hard-to-reproduce problem in clinical practices, so it is essential
to propose a homogenized automatic pre-processing method.

Third, HAPre-KRS greatly outperforms all the state-of-the-art base-
lines in terms of all evaluation metrics on all three datasets. For
example, the F1-scores of the best SOTA pre-processing baseline, DRL-
DA, the best SOTA attention baseline, DANet, and the best SOTA
pneumonia classification baseline, MAG-SD, are 0.7468 (resp., 0.8250
and 0.6253), 0.7515 (resp., 0.8263 and 0.6511), and 0.7732 (resp.,
0.8264 and 0.6537), respectively, on RSNA-Pneumonia (resp., Ped-
Pneumonia and our dataset), while that of HAPre-KRS is 0.7918 (resp.,
0.8287 and 0.6768). Please also note that the superior performances
are achieved by introducing only one pre-processing operation, i.e., key
region selection pre-processing, into the auxiliary network, so the per-
formances of the proposed DRL-HAPre framework actually can be easily
further enhanced by adding more potential pre-processing operations
(which is one of the interesting future works). These findings thus
prove the superior performances of HAPre-KRS and the proposed DRL-
HAPre framework, i.e., using task-oriented homogenized automatic
pre-processing can effectively improve the feature learning ability of
the corresponding deep models.
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Finally, we also find that compared to the best state-of-the-art
baselines (whose results are underlined), HAPre-KRS can achieve sig-
nificant improvements on RSNA-Pneumonia and our dataset (e.g., the
improvements w.r.t. the best baselines in F1-score are 0.0218 and
0.0297, respectively), but it only has marginal improvements on Ped-
Pneumonia (the improvement of F1-score is only 0.0015). The reason is
as follows: the performance improvement of HAPre-KRS is achieved by
using automatic homogenized pre-processing to improve the quality of
medical images; since the images in Ped-Pneumonia have already been
pre-processed and with high-quality, using HAPre-KRS can only bring
limited image quality improvement, and thus the performance improve-
ment is also limited; differently, the images in RSNA-Pneumonia and
our dataset are without pre-processing and with relatively low quality,
so there is a lot of space for HAPre-KRS to improve the image quality
and also the performances. This finding proves that the lower the
qualities of the medical images, the greater the improvements of using
our HAPre-KRS model and DRL-HAPre framework; so the proposed
DRL-HAPre is a more superior choice for deep learning based medical
image analysis with data that is not pre-processed.

4.5. Effects on cross-source applications

Since it is usually not easy to obtain sufficient medical images in
a short period, in order to enhance the landing efficiency of the CAD
systems in clinical practices, cross-source application of CAD models
or systems is adopted, i.e., using a large dataset that is obtained in a
medical institute to train a medical image analysis model or system,
and then apply the well-trained model or system on some similar
tasks based on the same kind of medical images in another medical
institute. Due to the different image qualities in the different medical
institutes, the cross-source application will usually result in the per-
formance drop of the deep models; however, we believe that by using
task-oriented homogenized automatic pre-processing, our DRL-HAPre
framework can narrow the quality differences of medical images from
different sources, which thus remedy the performance degradation in
the cross-source application of CAD systems. Consequently, additional
experiments are conducted to validate the superior performances of the
proposed HAPre-KRS model and DRL-HAPre framework in the cross-
source application, where the deep models ResNet and HAPre-KRS
(using ResNet as the task network) are trained using the training sets
of three datasets respectively and each of their resulting well-trained
models is tested on all three testing sets. As shown in Table 3, this thus
results in nine groups of results: three groups are trained and tested
using the same datasets (in the diagonal of Table 3), while another six
groups are trained and tested using different datasets. To show the sta-
bility and scalability of the proposed HAPre-KRS model and DRL-HAPre
framework (i.e., their supremacy remains with different backbones),
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Table 3
The results (in %) of cross-source applications (i.e., using the model trained on a data source to conduct predictions on other data sources), where ‘‘∗’’ represents the corresponding
ResNet with the specific depth, the improvements of same-source results (i.e., results obtained when the same datasets are used for both training and testing) are underlined, and
the improvements of different-source results (i.e., results obtained by using medical images from different sources for training and testing) are in bold.

Train Test

Model Ped-Pneumonia (High) RSNA-Pneumonia (Medium) Ours (Low)

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Ped-Pneumonia

ResNet-18 88.30 82.33 82.67 82.40 70.11 69.51 68.37 68.90 72.43 59.58 59.38 59.72
∗ + HAPre-KRS 88.84 82.57 83.11 82.79 73.24 72.55 71.59 71.78 77.74 61.60 62.48 61.89
Improvement 0.54 0.24 0.44 0.39 3.13 3.04 3.22 2.88 5.31 2.02 3.10 2.17

ResNet-34 87.49 82.64 81.51 81.63 70.62 69.35 67.82 68.25 72.55 59.87 59.04 59.13
∗ + HAPre-KRS 88.32 82.80 82.08 81.93 73.73 71.66 71.02 71.23 78.37 62.43 60.80 61.77
Improvement 0.83 0.16 0.57 0.30 3.11 2.31 3.20 2.98 5.82 2.56 1.76 2.64

ResNet-50 88.92 81.95 82.92 82.29 70.77 70.42 68.73 69.29 73.48 60.56 61.08 60.49
∗ + HAPre-KRS 89.69 83.16 83.40 82.87 73.33 72.33 71.92 72.19 80.24 61.55 62.11 61.66
Improvement 0.77 1.21 0.48 0.58 2.56 1.91 3.19 2.9 6.76 0.99 1.03 1.17

RSNA-Pneumonia

ResNet-18 70.78 65.44 65.15 64.73 74.93 74.47 75.04 74.78 70.67 60.33 61.25 60.78
∗ + HAPre-KRS 87.55 86.73 86.18 86.29 78.22 79.36 79.85 79.50 79.97 70.12 69.77 69.95
Improvement 16.77 21.29 21.03 21.56 3.29 4.89 4.81 4.72 9.3 9.79 8.52 9.17

ResNet-34 71.33 64.63 65.40 64.88 74.54 75.04 76.78 74.22 71.33 61.46 60.06 60.33
∗ + HAPre-KRS 87.15 85.83 86.35 85.97 79.53 78.71 79.42 78.97 80.12 70.44 70.16 70.25
Improvement 15.82 21.2 20.95 21.09 4.99 3.67 2.64 4.75 8.79 8.98 10.1 9.92

ResNet-50 71.82 66.60 65.54 65.71 74.67 74.50 74.75 74.53 71.67 61.54 61.08 61.31
∗ + HAPre-KRS 88.52 87.46 88.27 87.70 79.87 78.08 80.46 79.18 80.88 71.45 70.42 70.74
Improvement 16.7 20.86 22.73 21.99 5.2 3.58 5.71 4.65 9.21 9.91 9.34 9.43

Ours

ResNet-18 65.12 59.25 61.67 60.17 61.25 59.55 60.40 59.67 84.92 65.01 65.00 64.53
∗ + HAPre-KRS 80.81 74.44 76.50 75.78 66.13 63.25 66.47 64.70 86.48 68.05 69.26 68.34
Improvement 15.69 15.19 14.83 15.61 4.88 3.7 6.07 5.03 1.56 3.04 4.26 3.81

ResNet-34 65.32 62.40 61.23 61.55 61.56 59.73 58.52 58.80 84.56 64.31 64.41 63.66
∗ + HAPre-KRS 81.06 73.42 75.44 74.56 66.37 63.14 63.88 63.48 86.88 68.14 68.77 68.04
Improvement 15.74 11.02 14.21 13.01 4.81 3.41 5.36 4.48 2.32 3.83 4.36 4.38

ResNet-50 58.89 52.65 50.34 50.95 61.68 59.73 60.44 60.04 84.83 62.72 64.38 63.41
∗ + HAPre-KRS 80.33 73.45 72.27 72.77 66.84 64.41 64.70 64.58 86.62 67.57 68.36 67.68
Improvement 21.44 20.8 21.93 21.82 5.16 4.48 4.26 4.54 1.79 4.85 3.98 4.27
Table 4
The results (in %) of applying the proposed framework for key region selection pre-processing and using the state-of-the-art attention baselines in ResNet-based medical image
classification tasks using various pneumonia image datasets, where ‘‘∗’’ represents the corresponding ResNet with the specific depth, the best results in a given metric are bold,
the second best ones are underlined, and Improvement represents the gaps between the best and the second best results.

Model Ped-Pneumonia (High) RSNA-Pneumonia (Medium) Ours (Low)

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

ResNet-18 88.30 82.33 82.67 82.40 74.93 74.47 75.04 74.78 84.92 65.01 65.00 64.53
∗ + CBAM 88.50 81.63 82.91 82.53 75.24 75.51 75.20 74.94 85.25 62.51 66.26 63.68
∗ + DANet 88.53 82.48 82.69 82.63 75.63 75.70 76.62 75.15 85.17 65.48 64.91 65.11
∗ + HAPre-KRS 88.84 82.57 83.11 82.79 78.22 79.36 79.85 79.50 86.48 68.05 69.26 68.34
Improvement 0.31 0.09 0.20 0.16 2.59 3.66 3.23 4.35 1.23 2.57 3.00 3.23

ResNet-34 87.49 82.64 81.51 81.63 74.54 75.04 76.78 74.22 84.56 64.31 64.41 63.66
∗ + CBAM 88.12 82.53 81.73 81.71 74.98 75.33 77.25 75.84 85.28 64.67 65.47 64.09
∗ + DANet 87.91 82.77 81.16 81.68 75.57 76.61 77.76 76.96 85.20 65.11 64.94 64.73
∗ + HAPre-KRS 88.32 82.80 82.08 81.93 79.53 78.71 79.42 78.97 86.88 68.14 68.77 68.04
Improvement 0.20 0.03 0.35 0.22 3.96 2.10 1.66 2.01 1.60 3.03 3.30 3.31

ResNet-50 88.92 81.95 82.92 82.29 74.67 74.50 74.75 74.53 84.83 62.72 64.38 63.41
∗ + CBAM 88.72 82.11 82.82 82.44 75.66 75.47 75.58 75.18 84.95 64.67 63.89 63.77
∗ + DANet 89.20 81.93 82.98 82.45 76.10 75.84 76.25 75.76 85.37 63.18 64.79 63.57
∗ + HAPre-KRS 89.69 83.16 83.40 82.87 79.87 78.08 80.46 79.18 86.62 67.57 68.36 67.68
Improvement 0.49 1.05 0.42 0.42 3.77 2.24 4.21 3.42 1.25 2.90 3.57 3.91
we use three ResNet models with different depths (i.e., ResNet-18,
ResNet-34, ResNet-50) in our experiments.

As shown in Table 3, we first observe that when a ResNet model
is trained in a dataset, the results of using different datasets for testing
(called different-source results) are always lower than those of using the
same datasets for testing (called same-source results), even if the testing
medical images belong to a dataset with higher image quality. For
example, when the ResNet-50 model is trained using RSNA-Pneumonia,
the different-source results obtained by using medical images in Ped-
Pneumonia and our dataset for testing (e.g., F1-scores are 0.6571
and 0.6131, respectively) are dramatically lower than the same-source
9

results obtained using RSNA-Pneumonia for testing (e.g., F1-score is
0.7453), even if the medical images in Ped-Pneumonia have much
better quality than those in RSNA-Pneumonia; similarly, when ResNet-
50 is trained by our dataset, the different-source results (e.g., F1-scores
are 0.5059 and 0.6004) are also always lower than the same-source
results (e.g., F1-score is 0.6341), despite the image quality in another
two datasets is much better than that in our dataset. This thus proves
again the existence of hard-to-reproduce problems in the application of
deep medical image analysis models in clinical practices.

Then, we further find that using the proposed HAPre-KRS model
not only enhances the performances of ResNet models in all cases,
but more importantly, it can also remedy the performance degrada-

tion in the cross-source application. This is because, by using the
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homogenized pre-processing to narrow the quality gaps of images
from different sources, the improvements of using HAPre-KRS for the
different-source results (highlighted in bold in Table 3) are always
much higher than those for the same-source results (with underlines in
Table 3). For example, when ResNet-50 and the corresponding HAPre-
KRS model are trained on RSNA-Pneumonia, the F1-score improvement
obtained for the same-source case is 0.0465, while those obtained
for different-source cases using Ped-Pneumonia and our dataset for
testing are 0.2199 and 0.0943, respectively; i.e., the latter two are
several times higher than the former. Similarly, when ResNet-18 and
the corresponding HAPre-KRS model are trained using Ped-Pneumonia
(resp., our dataset), the F1-score improvement of the same-source case
is only 0.0039 (resp., 0.0381), while those of different source cases
are 0.0288 and 0,0217 (resp., 0.1561 and 0.0503). Consequently, we
can assert that by introducing higher improvements for the different-
source results than the same-source results, our work can remedy the
hard-to-reproduce problem in the practical cross-source application.

In addition, an interesting phenomenon is noted in Table 3 that
with the help of the HAPre-KRS model, the cross-source application of
deep CAD models can sometimes even obtain better performances than
the corresponding same-source application. For example, when using
ResNet-34 as the backbone, the F1-score of HAPre-KRS that is trained
by RSNA-Pneumonia and tested by Ped-Pneumonia (i.e., 0.8597) is
much higher than that uses Ped-Pneumonia for both training and
testing (i.e., 0,8193); similarly, the ResNet-34 based F1-score of HAPre-
KRS that is trained by RSNA-Pneumonia and tested by our dataset
(0.7025) is much higher than that uses our dataset for both training
and testing (i.e., 0,6804). This means that the HAPre-KRS model is
trained using RSNA-Pneumonia and used in the same kind of medical
image analysis tasks in other medical institutes, e.g., Ped-Pneumonia
and our dataset, it not only will not have performance degradation but
can even achieve better performances than training using the medical
images that are from the same sources as the testing. Consequently, this
finding demonstrates that the proposed HAPre-KRS model and DRL-
HAPre framework not only reduce the performance degradation in the
practical cross-source application, but it can also even help the cross-
source application of CAD systems to sometimes achieve much better
performances than training and testing the CAD systems using medical
images from the same medical institute (i.e., same-source application
of CAD), which significantly thus enhance the landing efficiency and
effectiveness of CAD systems in real-world practices.

4.6. Compared to existing attention mechanisms

As the functionality of key region selection pre-processing in our
proposed HAPre-KRS is very similar to the widely used attention mech-
anism (i.e., make the learning of deep models focus on some key areas),
to show the effectiveness of the proposed DRL-HAPre framework more
comprehensively, we further compare the performances of HAPre-KRS
and the state-of-the-art attention methods (CBAM and DANets) using
ResNet models with three different depths, i.e., ResNet-18, ResNet-34,
and ResNet-50, on three pediatric pneumonia classification tasks.

Generally, as shown in Table 4, we observe that the performances of
HAPre-KRS and the state-of-the-art attention baselines are always better
than those of the corresponding ResNet models in all cases. This states
that guiding the model to pay attention to the key areas is an effective
way to improve the deep models’ learning capabilities. Furthermore,
we also find that the performances of HAPre-KRS and the attention
baselines on Ped-Pneumonia is generally better than those in RSNA-
Pneumonia and our dataset, this is because the higher the medical
image quality, the better the deep model’s performances. Finally, we
note that, regardless of the depth of ResNet, HAPre-KRS always out-
performs CBAM and DANet, and comparing to the second best results,
the improvement gaps of HAPre-KRS on RSNA-Pneumonia and our
datasets (e.g., ResNet-18 based improvements are respectively 0.0435
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and 0.0323 in F1-score), i.e., the ones with medium or low image
Table 5
The results (in %) of the state-of-the-art supervised classification backbone models on
our dataset, where Params represents the number of parameters in the corresponding
model. The best results in the corresponding metrics are bold.

Model Acc Pre Rec F1 Params

ResNet-18 84.92 65.01 65.00 64.53 11.18M
ResNet-34 84.56 64.31 64.41 63.66 21.29M
ResNet-50 84.83 62.72 64.38 63.41 25.55M
DenseNet-121 84.53 60.18 61.42 60.06 6.87M
DenseNet-169 83.48 59.05 61.16 59.95 12.33M
VGG-16 84.58 60.87 66.22 62.53 134.27M
VGG-19 86.18 60.91 67.94 63.32 139.58M

quality, are always larger than those on Ped-Pneumonia (e.g., ResNet-
18 based F1-score improvement is only 0.0016), i.e., the one with
high image quality. This proves the effectiveness of HAPre-KRS more
comprehensively: by conducting homogenized key region selection pre-
processing, HAPre-KRS not only provides a more accurate key area for
feature learning than the SOTA attention baselines, but it also greatly
enhances the quality of medical images in RSNA-Pneumonia and our
dataset and thus introduces significant performance improvements on
these datasets, while the images in Ped-Pneumonia have been well-
preprocessed so the enhancement is limited. In addition, since the
HAPre-KRS model is a relatively simple implementation of the proposed
DRL-HAPre framework in the pediatric pneumonia classification tasks,
the effectiveness of HAPre-KRS also proves the effectiveness of our DRL-
HAPre framework in achieving painless and accurate medical image
analysis, where DRL-HAPre framework can be independently designed
using appropriate auxiliary network and task network according to
the corresponding medical image analysis tasks, and can also include
various homogeneous pre-processing operations as needed.

We also show some visualized examples of HAPre-KRS and the
attention baselines in Fig. 5 to exhibit the supremacy of HAPre-KRS
that uses the task-oriented homogenized automatic pre-processing in
localizing optimal key areas in pediatric pneumonia classification tasks,
where four X-ray images from our dataset and their corresponding
heatmaps generated by ResNet-18, HAPre-KRS and the attention base-
lines are shown. Specifically, the image shown at the first row of
Fig. 5 is a medical image with a relatively obvious and clear lung area
(i.e., images with relatively good quality); for this easy case, ResNet
and ResNet with additional attention mechanisms can generally locate
the lungs to a certain extent, but our model can locate the lung region
more accurately. Furthermore, the examples shown at the second to
forth rows of Fig. 5 are some medical images with low quality (i.e., the
lung areas are either less obvious, with Small size, or containing some
interference information); for these hard cases, ResNet and ResNet
with additional attention mechanisms mistakenly pay attention to some
interference areas, such as a doctor’s hand, however, our model can
still locate the interested lung region stably and accurately. Therefore,
these visualized observations greatly demonstrate again that, by using
the proposed task-oriented homogenized automatic pre-processing to
dynamically adjust the detection network and classification network,
HAPre-KRS is more effective than the state-of-the-art attention mecha-
nisms in practical medical image classification tasks, especially for the
images without pre-processing, because it can locate the key region,
i.e., the lung area in this task, accurately and stably not only in
easy cases but also in hard cases with low quality and interference
information.

4.7. The selection of task network

Furthermore, we conduct additional experiments to illustrate the
rationality of selecting ResNet as the task network (i.e., backbone)
in HAPre-KRS. Table 5 shows the results of all the state-of-the-art
supervised classification backbone models. As shown in Table 5, the

ResNet models generally achieve the best performances, while the
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Fig. 5. Visualized examples of attention heatmaps of the proposed HAPre-KRS and the attention baselines. ‘‘∗’’represents the corresponding ResNet with the specific depth.
number of parameters used in the ResNet methods are relatively low;
so we select the ResNet model as the task network (i.e., backbone) in
the proposed HAPre-KRS.

5. Social impact for proposed framework

Medical image pre-processing is time-consuming and highly de-
pendent on expert assistance, whose quality greatly affects the per-
formances of subsequent deep-learning-based medical image analy-
sis. However, there exist hard-to-deploy-quickly and hard-to-reproduce
problems in the current medical image pre-processing solutions, which
greatly limit the deployment efficiency and performances of intelli-
gent medical image analysis models in clinical practices. Taking the
pneumonia X-ray image classification as an example, the lesion areas
in chest X-ray images of children are usually irregular, small, and
contain interference information, such as motion artifacts and irrele-
vant objects (e.g., the doctor’s hands). Therefore, a commonly used
pre-processing operation is to locate the key areas in the image and
remove other irrelevant areas, i.e., key region selection. However,
the pre-processing of key region selection heavily relies on experts’
experience in reading the chest X-ray images and accurately locating
the key areas, which thus hinders the rapid deployment and cross-
institutes application of the corresponding deep-learning-based medical
image classification models. Therefore, by proposing the DRL-HApre
framework to automatically conduct the homogeneous pre-processing
for medical image analysis models, our work can alleviate the hard-
to-deploy-quickly and hard-to-reproduce problems, and help achieve
painless and accurate medical image analysis in medical practices.
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Consequently, besides the technical contributions, this work also brings
great social benefits in the related research and clinical areas, e.g., ac-
celerating the application process of the intelligent CAD system to
significantly reduce the workload of doctors, and saves both time and
money for patients.

In addition, by utilizing an auxiliary network to generate additional
auxiliary information or signals and help the task network achieve
better performances in a deep reinforced way, the proposed DRL-HAPre
framework can not only be used to conduct task-oriented homogenized
automatic pre-processing in pediatric pneumonia classification tasks,
but also be used to boost the deep models’ performances in many
closely-related application domains. First, DRL-HAPre can be used to
improve the classification performance of other kinds of medical image
classification tasks (e.g., COVID-19 classification [33], skin disease
classification [34], etc.) in a similar way with similar or even more
pre-processing operations. Second, medical image segmentation [35] is
an important clinical task but it is a very time-consuming and labor-
intensive task to obtain pixel-wise segmentation masks in practices, so
DRL-HAPre can be further applied (with some simple modifications)
to resolve this problem by using detection and classification models as
the auxiliary network to provide bounding-box based weak supervision
signals for the segmentation model based task network, which thus
reduces the number of pixel-wise segmentation annotations needed
for the deep segmentation model [36] to achieve satisfactory perfor-
mances. Last but not least, DRL-HAPre can also be used to enhance the
performances of medical image detection [37] using deep reinforce-
ment learning; a potential way may be using a classification model
as the auxiliary network to generate class activation maps to guide
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the bounding-box selection in the deep detection model based task
network. Consequently, the proposed DRL-HAPre can bring significant
and beneficial impacts on these closely-related application domains.

6. Conclusion and future work

In this work, we first identified the existence of the hard-to-deploy-
quickly and hard-to-reproduce problems in the pre-processing of the
deep learning based medical image analysis. Then, a deep-reinforcement
learning task-oriented homogenized automatic pre-processing frame-
work, DRL-HAPre was proposed to overcome these two problems and
achieve painless (due to automation) and accurate (due to Homoge-
nized quality enhancement) medical image analysis in clinical prac-
tices. Finally, based on the DRL-HAPre framework, a pre-processing
model, HAPre-KRS, was further developed to achieve automatic and
homogenized pre-processing of key region selection in the pneumonia
image classification task.

Extensive experimental studies were conducted on three pediatric
pneumonia classification datasets with different image qualities. The
experimental results first proved the existence of the hard-to-reproduce
problem and the fact that having different medical image qualities in
different medical institutes is an important reason for the existence of
a hard-to-reproduce problem in clinical practices, so it is compelling
to propose homogenized automatic pre-processing method. Then, the
results further exhibited that the proposed HAPre-KRS model and DRL-
HAPre framework greatly outperform three kinds of state-of-the-art
baselines (i.e., pre-processing, attention and pneumonia baseline), and
the lower the medical image quality, the greater the improvements of
using our HAPre-KRS model and DRL-HAPre framework. Finally, with
the help of homogenized pre-processing, HAPre-KRS (and DRL-HAPre
framework) can greatly avoid performance degradation in real-world
cross-source applications and thus overcome the hard-to-reproduce
problem.

As for the future scope of this work, although our experiments
mainly focus on the automatic pre-processing of key region selection,
we believe any pre-processing operations (e.g., the ones mentioned
in [18]) that can reduce image interference information is suitable to
be incorporated into the DRL-HAPre framework to achieve an auto-
matic and homogenized medical image pre-processing. Furthermore,
our framework not only can be applied in a single pre-processing
operation but also be used to bring automation and homogenization
to hybrid pre-processing tasks [19], where a combination of multiple
pre-processing techniques are automatically and adaptively selected
using DRL-HAPre framework to achieve optimal and homogenized pre-
processing and then enhance the performances of subsequences medical
image analysis tasks. Consequently, an interesting future research di-
rection is to further explore and investigate the applications of the
proposed framework in various homogenized automatic medical image
(hybrid) pre-processing tasks in different clinical applications.
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