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Although U-Net and its variants have achieved some great successes in medical image segmentation
tasks, their segmentation performances for small objects are still unsatisfactory. Therefore, in this work,
a new deep model, x-Net, is proposed to achieve more accurate medical image segmentations. The
advancements of x-Net are mainly threefold: First, it incorporates an additional expansive path into
U-Net to import an extra supervision signal and obtain a more effective and robust image segmentation
by dual supervision. Then, a multi-dimensional self-attention mechanism is further developed to high-
light salient features and suppress irrelevant ones consecutively in both spatial and channel dimensions.
Finally, to reduce semantic disparity between the feature maps of the contracting and expansive paths,
we further propose to integrate diversely-connected multi-scale convolution blocks into the skip connec-
tions, where several multi-scale convolutional operations are connected in both series and parallel.
Extensive experimental results on three abdominal CT segmentation tasks show that (i) x-Net greatly
outperforms the state-of-the-art image segmentation methods in medical image segmentation tasks;
(ii) the proposed three advancements are all effective and essential forx-Net to achieve the superior per-
formances; and (iii) the proposed multi-dimensional self-attention (resp., diversely-connected multi-
scale convolution) is more effective than the state-of-the-art attention mechanisms (resp., multi-scale
solutions) for medical image segmentations. The code will be released online after this paper is formally
accepted.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the fast development of artificial intelligence, deep-
learning-based medical image analysis technologies have been
increasingly applied in clinical computer-aided diagnosis (CAD)
[10,15]. Deep-learning-based medical image segmentation is one
of the most important tasks in CAD [5], which aims to recognize
and annotate the regions of interest (e.g., organs and lesions) with
masks and/or outlines using deep models. U-Net is a widely
exploited deep-learning-based medical image segmentation
model, where a contracting path is utilized to extract deep features
from the input images, an almost symmetric expansive path is
used to achieve precise localization, and skip connections are
adopted to remedy the information loss in convolutions [29].

Although U-Net has already achieved some great successes, its
segmentation accuracy for small objects is still unsatisfactory. This
is because the contracting path of U-Net will extract increasingly
abstract or coarse feature maps layer by layer [11], so the features
of some important small objects may become invisible or even be
lost in the deep layers, making it difficult for U-Net to effectively
learn features of small objects [9]. Skip connections are used in
U-Net to remedy this problem by concatenating the deep and
coarse features in the expansive path with the shallow and fine
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features in the contracting path to enrich the feature information.
However, this solution suffers from the following two shortcom-
ings: (i) Irrelevant information problem: Concatenating features in
the contracting path not only import the important missing infor-
mation to the feature maps in the expansive path, but also intro-
duce some irrelevant information that should have been filtered
at the deeper layers of U-Net, which thus reversely affects the
model’s segmentation performances [28]. (ii) Semantic disparity
problem: Since the concatenated feature maps are generated by dif-
ferent layers located at different depths of the deep network, there
may exist semantic differences between them, so concatenating
these feature maps directly may arguably be inappropriate and
thus may weaken the segmentation accuracy [17,47]. Conse-
quently, using solely skip connections is still not sufficient for U-
Net to achieve accurate segmentations for small objects. Although
the resulting segmenting errors may be relatively small, they are
still unacceptable in practical medical image segmentation tasks,
and may cause fatal consequences in clinical practice [47]. For
example, when this model is used to delineate the target area of
tumor radiotherapy, even a few tumor cells missed may cause
the failure of radiotherapy and the recurrence of cancer. Therefore,
the need of a more accurate deep model for medical image seg-
mentation is compelling.

To overcome the irrelevant information problem, a variant of
U-Net, Attention U-Net [28], has been proposed to utilize attention
gates to assign the concatenated features with different weights to
suppress irrelevant regions while highlighting the salient features
that are useful for specific segmentation tasks. However, in
Attention U-Net, the weights of concatenated features in a given
layer are determined by the information of feature maps in the
next layer; since the feature maps generated in deeper layers are
more abstract (i.e., more likely to lose important features of minor
objects), Attention U-Net may be able to highlight some salient
features, but may also mistakenly suppress some important
features of small objects that are missing in the next layer.
U-Net++ [47], on the other hand, is another variant of U-Net,
where the semantic disparity problem is alleviated by applying
nested dense convolutions onto skip connections to generate
feature maps that contain feature information with different
scales. However, in U-Net++, the multi-scale feature information
mainly comes from the more abstract feature maps generated in
the deeper layers of the contracting path, which are usually more
likely to lose some important information of small objects, so
U-Net++ may be also inadequate for the small object segmentation
tasks.

Consequently, in this work, we propose a dual supervised deep
segmentation model, x-Net, for more accurate medical image seg-
mentation, where the irrelevant information problem and the
semantic disparity problem are respectively remedied using a
multi-dimensional self-attention (MDSA) mechanism and diversely-
connected multi-scale convolution (DC-MSC) blocks. Generally, com-
paring to the conventional U-Net, the proposed x-Net mainly has
the following three improvements. First, in x-Net, we incorporate
an additional expansive path into U-Net to bring an additional learn-
ing loss (called auxiliary loss) for dual supervised segmentation,
which can enhance the deep model’s feature learning capability
by obtaining features that are more effective and robust for image
segmentation. Specifically, with the help of the additional expan-
sive path, the segmentation learning in original expansive path
takes into account not only the feature information from the con-
tracting path, but also the intermediate segmentation information
from the additional expansive path. Consequently, the deep model
can generate more accurate segmentation results, because the final
segmentation results can be seen as further refinements based on
the coarse intermediate segmentation results generated in the
additional expansive path.
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Furthermore, the second advancement of x-Net is to propose a
novel multi-dimensional self-attention (MDSA) mechanism to rem-
edy the irrelevant information problem using two consecutive
self-attention modules, dense spatial position attention (DSPA) and
channel attention (CA), which respectively capture features’ self-
dependencies in the spatial and channel dimensions. Specifically,
in DSPA, the importance of a position in a feature map is deter-
mined by its dependencies with all other positions in the same fea-
ture map; similarly, in CA, the importance of a channel is
determined by its dependencies with all other channels within
the same layer. Generally, MDSA has the following advantages:
(i) The weights of features in MDSA are computed in both spatial
and channel dimensions, making it describe the importance of fea-
tures more comprehensively. (ii) The weights of features in MDSA
are computed solely based on information sourced from them-
selves (i.e., self-attention [44]), so it will not encounter the same
problem as Attention U-Net. (iii) More importantly, we notice that
the computation of spatial attention in all the existing multi-
dimensional attention works [8,38] is always very time and mem-
ory consuming, because the size of feature map is usually very
large. So, in order to efficiently estimate the weights of features
in the spatial dimension, MDSA applies a dilated convolution block
in DSPA to convert the input feature map to a dense feature matrix,
whose size is much smaller than the input feature map (i.e., repre-
senting the feature map in a much denser way), and then use the
dense feature matrix, instead of using the input feature map
directly, to estimate the spatial dependencies. Consequently, MDSA
is more efficient than the existing multi-dimensional attention
solutions, while achieving even better segmentation performances
according to our experimental studies.

Finally, in order to alleviate the semantic disparity problem, we
propose to further integrate diversely-connected multi-scale convo-
lution (DC-MSC) blocks into the skip connections of x-Net. DC-
MSC utilizes convolution kernels with different sizes to generate
feature maps that contain feature information of different scales,
which thus reduces the semantic difference between the concate-
nated feature maps. Differently from the existing multi-scale
methods [17,36,41,45], whose multi-scale pooling or convolution
operations are all connected in parallel, the various-sized convolu-
tional operations in DC-MSC are connected diversely in both series
and parallel. We believe that the diverse connections of multi-scale
convolution will enhance the utilization of the generated multi-
scale feature maps, and help the deep model achieve better seg-
mentation performances.

The contributions of this paper can be summarized as follows:

� We identify the existing two shortcomings of U-Net and pro-
pose a dual supervised deep model, x-Net, to remedy these
problems and achieve more accurate medical image
segmentations.

� In x-Net, an additional expansive path is first proposed to
strengthen the deep segmentation model’s feature learning
capability based on dual supervision. Then, to overcome the
irrelevant information problem, a multi-dimensional self-
attention (MDSA) mechanism is further proposed to highlight
the salient features and suppress the irrelevant ones using
two consecutive self-attention modules to capture features’
self-dependencies in both spatial and channel dimensions.
Finally, we propose to integrate diversely-connected multi-
scale convolution (DC-MSC) blocks into the skip connections
to remedy the semantic disparity problem.

� Extensive experimental studies are conducted on three real-
world abdominal CT segmentation datasets, and the results
show the following: (i) The proposed x-Net significantly out-
performs the state-of-the-art image segmentation methods in
the medical image segmentation tasks in terms of all metrics.
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(ii) The proposed three advancements are all effective and
essential for x-Net to achieve the superior segmentation per-
formances. (iii) The proposed multi-dimensional self-attention
(resp., diversely-connected multi-scale convolution) is more
effective than the state-of-the-art attention mechanisms (resp.,
multi-scale methods) in alleviating the irrelevant information
(rep., semantic disparity) problem and achieving more accurate
medical image segmentations.

2. Related Work

Medical image segmentation is the process of identifying and
delineating the targeted objects (e.g., organs or lesions) in clinical
images. Deep-learning-based methods have already been widely
applied in medical image segmentation tasks. FCN is the first
end-to-end image segmentation model using convolutional neural
networks [25]; FCN-based medical image segmentation is mainly
achieved by first using convolution and pooling operations for fea-
ture learning and then applying a transpose convolutional up-
sampling based skip architecture for pixel-level classifications
[1,46]. To obtain more refined segmentations, U-Net is further pro-
posed to upgrade FCN to a structure with symmetrical contracting
(down-sampling) and expansive (up-sampling) paths, and skip
connections are also used in U-Net to concatenate the deep and
coarse features in the expansive path with the shallow and fine
features in the contracting path for more accurate and detailed
segmentations [29]. U-Net is arguably the most widely adopted
deep model for medical image segmentation, recent works witness
the application of U-Net in various segmentation tasks, such as
segmenting brain tumor [2,6,42,43], liver [16,21,24], pancreas
[28,36], and retinal vessels [33,34]. Despite achieving some suc-
cesses, the performances of the existing U-Net based deep models
are still unsatisfactory, especially for segmenting the small objects
in medical images, so x-Net is proposed in this work.

Improving the U-Net Architecture. The first contribution ofx-
Net is to improve the architecture of U-Net by importing an addi-
tional expansive path. In recent years, there also exists some deep-
learning-based segmentation methods that try to optimize the
structure of U-Net for better segmentation performances
[4,26,28,47]. To capture retinal vessels at various shapes and adap-
tively adjust the receptive fields according to the vessels’ shapes,
Jin et al. propose a deformable U-Net (DUNet), where deformable
convolutions are introduced into the U-shape architecture to
extract context information and enable precise localization [20].
To suppress the response of irrelevant background information
and enhance the sensitivity of foreground information, Attention
U-Net [28] is proposed to integrate attention gates into the expan-
sive path to estimate the feature weights; while dual attention net-
works (DANet) [8] apply attention mechanisms in both spatial and
channel dimensions. U-Net++ is introduced in [47] to apply nested
dense convolutions onto skip connections to reduce the semantic
gaps between the feature maps generated in the contracting and
expansive paths; then U-Net3+ [16] further improves U-Net++
using full-scale skip connections and deep supervisions. Moreover,
to better model the three-dimensional spatial relationship on 3D
medical images, many 3D variants of U-Net have been proposed
in recent works, e.g., 3D U-Net [4], V-Net [26], and nnU-Net [18].
Therefore, to evaluate the performances ofx-Net in medical image
segmentation tasks, six state-of-the-art segmentation methods
FCN [25], U-Net [29], Attention U-Net [28], DANet [8], U-Net++
[47], and U-Net 3+ [16] are selected as the baselines in our
experiments.

Attention Mechanisms. The second improvement of x-Net is
to adopt a multi-dimensional self-attention (MDSA) mechanism
to measure the importance of features on both spatial position
and channel dimensions. Similarly, attention mechanisms [23,32]
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have also been utilized in some recent works to improve the per-
formances of deep-learning-based image processing models
[19,35,38,39]. In order to learn discriminative features and to
address the specular reflection issue, Ni et al. propose a new atten-
tion module to capture global context and encode semantic depen-
dencies to emphasize key semantic features [27]. Squeeze-and-
excitation networks (SENets) are proposed in [14] to explicitly
model inter-dependencies between channels and adaptively re-
calibrate channel-wise feature responses. As SENet may be sensi-
tive to noise during average-pooling processes, Wang et al. pro-
pose to resolve this problem by using the weighted sum of the
features at all positions to capture long-range dependencies for
the global receptive field [37]. However, computing the weights
of all the position is usually very time-consuming, to capture target
objects with different scales, selective kernel networks (SKNet)
uses pooling operations to compress the input feature maps and
utilize softmax attention to fuse branches with different kernel
sizes [22].

Similar to our work, there also exist some researches that pro-
pose to infer attention maps along two separate dimensions.
Woo et al. propose a convolutional block attention module (CBAM)
to sequentially infer channel and spatial attention maps, which are
then multiplied to the input feature map for adaptive feature
refinement [38]. Similarly, to integrate local features with their
global dependencies adaptively, dual attention networks (DANets)
are proposed to combine parallel position and channel attention
(PPCA) modules with the traditional dilated FCN to respectively
model the semantic inter-dependencies in spatial and channel
dimensions [8]. However, the existing multi-dimensional attention
works are usually very time and memory consuming, especially for
high-resolution images, such as medical images. Differently, in this
work, the proposed multi-dimensional self-attention (MDSA)
mechanism uses dilated convolution blocks to generate dense
feature matrices to decrease the size of the feature representations,
which greatly reduces the time and memory consumption, while
maintaining good performances in highlighting the salient
features. Consequently, to show the effectiveness of MDSA in
achieving better medical image segmentations, experimental
studies are conducted in this work to also compare MDSA
with the state-of-the-art attention mechanisms: squeeze-
and-excitation attention (i.e., SOTA channel-wise attention) [14],
selective kernel attention (i.e., SOTA spatial attention) [22],
and parallel position and channel attention (i.e., SOTA multi-
dimensional attention) [8].

Semantic Disparity and Multi-Scale Methods. The third
advancement of x-Net is to utilize diversely-connected multi-
scale convolution blocks to resolve the semantic disparity problem.
Recent years have witnessed some research works that also use
multi-scale solutions to enhance the performances of convolu-
tional deep models [7], where multi-scale mechanisms can be
applied to either pooling or convolutional operations. A principled
pooling strategy, spatial pyramid pooling (SPP), is proposed to
enable the use of images with arbitrary sizes as the inputs of
CNN-based deep models, which improves both CNN-based image
classification and object detection methods in general [12]. In
order to obtain an accurate segmentation performance in diverse
scenes, Zhao et al. propose a pyramid scene parsing network
(PSPNet), where a pyramid pooling module is adopted to generate
and aggregate different-region-based context to better exploit glo-
bal context information [45]. Besides multi-scale pooling, multi-
scale convolution is also utilized to generate feature maps with dif-
ferent scales of details. The inception modules introduced by Goo-
gLeNet are designed to process and aggregate visual information at
different sizes of kernels to optimize the quality of feature learning
[31]. Moreover, Yu et al. develop a new convolutional module, par-
allel dilated convolution (PDC), which uses dilated convolutions to



Fig. 1. Overall structure of x-Net, where the blue blocks in additional expansive path are feature maps generated by the corresponding DC-MSC modules, and the purple
blocks in original expansive path are feature maps generated by the corresponding MDSA with DC-MSC modules.
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systematically aggregate multi-scale contextual information with-
out losing resolution for dense segmentations [41].

Similar to this work, multi-scale convolutional operations are
also utilized in [17] to alleviate the semantic disparity problem,
where multi-scale convolution blocks that consist of two paralleled
convolutional kernels are integrated into the skip connections of U-
Net. Wang et al. also incorporate multi-scale parallel convolution
modules into the skip connections, where the size of the multi-
scale module is increased to three paralleled kernels [36]. We
notice that the above related works all process the multi-scale
pooling or convolution operations in parallel, in order to enhance
the utilization of the generated multi-scale feature maps,
diversely-connected multi-scale convolution (DC-MSC) blocks are
proposed in this work, where the various-sized convolutional oper-
ations are connected in both series and parallel. To exhibit the
superior performance of DC-MSC in medical image segmentations,
experiments are also conducted to compare DC-MSC with three
state-of-the-art multi-scale solutions: pyramid scene parsing net-
work (i.e., SOTA multi-scale pooling mechanism) [45], parallel
dilated convolution module (i.e., SOTA multi-scale convolution
mechanism) [41], and parallel convolution module (i.e., SOTA
multi-scale solution for the semantic disparity problem in U-Net)
[36].
3. Dual Supervised Medical Image Segmentation with MDSA and
DC-MSC

Fig. 1 shows the overall structure of x-Net. Comparing to the
conventional U-Net, x-Net mainly consists of three additional
advanced modules: additional expansive path, multi-dimensional
self-attention (MDSA) mechanism, and diversely-connected
multi-scale convolution (DC-MSC) blocks. Specifically, an addi-
tional expansive path is introduced to bring an additional learning
loss, i.e., auxiliary loss, to strengthen the model’s learning capabil-
ity via dual supervision. Consequently, x-Net can generate more
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accurate segmentation results using both the feature information
from the contracting path and the intermediate segmentation
information from the additional expansive path. Furthermore, an
MDSA mechanism is proposed in x-Net to resolve the irrelevant
information problem by using two consecutive self-attention mod-
ules, dense spatial position attention (DSPA) and channel attention
(CA), to capture the importance of features in both spatial and
channel dimensions. To efficiently estimate the weights of features
in the spatial dimension, MDSA applies a dilated convolution block
in DSPA to convert the input feature map to a dense feature matrix
with a smaller size, which is then used to estimate the spatial
dependencies. Finally, DC-MSC blocks inx-Net are used to remedy
the semantic disparity problem using diversely-connected multi-
scale convolution kernels, where the various-sized convolutional
operations are connected in both series and parallel. Consequently,
this enhances the utilization of the generated multi-scale feature
maps and makes the final resulting feature maps of DC-MSC retain
more comprehensive semantic information with different scales,
which thus better reduces the semantic differences between the
concatenated feature maps. Please note that although x-Net aims
at segmenting 2D medical images, it can be easily extended to 3D
x-Net to directly process 3Dmedical images using a way similar to
extending U-Net to 3D U-Net [4], i.e., extending the convolution
kernels and pooling operations from 2D to 3D, and keeping the
number of channels unchanged.
3.1. Dual Supervised Segmentation with an Additional Expansive Path

The first improvement of x-Net is to incorporate an additional
expansive path into U-Net to achieve a more accurate medical
image segmentation by dual supervision. Specifically, similarly to
U-Net, x-Net has only one contracting path; but, differently from
U-Net, when the most abstract feature maps are obtained at the
deepest layer of the contracting path, they are then sent to two
expansive paths with similar structures. The expansive path that
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is also included in U-Net is called original expansive path, and the
newly added expansive path is called additional expansive path. In
each layer of the additional expansive path, we concatenate the
feature maps generated by the corresponding layer of the contract-
ing path with the feature maps resulting from the transpose convo-
lutional up-sampling operations in the last layer (actually, this
process is the same as the skip connection operation in U-Net).
Then, the concatenated feature maps in the additional expansive
path are sent to its subsequent layer and also the corresponding
layer of the original expansive path. Consequently, the up-
sampled feature maps in each layer of the original expansive path
are not only concatenated with the feature maps from the con-
tracting path but also with the up-sampled feature maps from
the additional expansive path. For example, as shown in Fig. 1,
the purple block concatenated with Fuo

4 is the concatenation of F1

(the corresponding feature map from the contracting path) and
Fua

4 (the corresponding feature map from the additional expansive
path). Finally, with the help of the additional expansive path, x-
Net is learned by dual supervision, i.e., the deep model is trained
using both a segmentation loss from the original expansive path
and an auxiliary segmentation loss from the additional expansive
path.

The advantages of introducing an additional expansive path to
achieve dual supervision in x-Net are twofold: On one hand, the
additional auxiliary segmentation loss can help the feature learn-
ing process in the contracting path to obtain features that are more
effective and robust for medical image segmentation; this is
because, with various segmentation supervision losses, the fea-
tures learned by the contracting path are now requested to adapt
to two different segmentation optimization directions in two dif-
ferent expansive paths, which thus enhances the feature learning
effectiveness and robustness of x-Net. On the other hand, in x-
Net, the up-sampled feature maps in each layer of original expan-
sive path are not only concatenated with the feature maps from the
contracting path but also with the up-sampled feature maps from
the additional expansive path; so the segmentation learning in the
original expansive path takes into account not only the feature
information from the contracting path, but also the intermediate
segmentation information from the additional expansive path,
which thus helps x-Net generate more accurate segmentation
results. The intuition is as follows, by treating the segmentation
process in the additional expansive path as a coarse segmentation
process, the final segmentation results generated in the original
expansive path can now be seen as further refinements based on
the coarse intermediate segmentation results generated in the
additional expansive path, which are usually more accurate.

The formal definition of dual supervised segmentation with an
additional expansive path can be written as follows. First, by
denoting the input image as X, the output feature map in the first
layer of the contracting path is formally

F1 ¼ Conv1�64ðXÞ; ð1Þ

where Conv1�64 means a convolutional operation whose number of
input channels is 1 and the number of output channels is 64. Then,

the output feature map at the ith (where i > 1) layer of the contract-
ing path is written as

Fi ¼ Pool MaxðConv 2ðFi�1ÞÞ; ð2Þ
where Conv 2ð�Þ represents two consecutive convolutional opera-
tions, and Pool Maxð�Þ is a max-pooling operation.

Given Fd as the most abstract feature map generated in the last
layer of the contracting path, where d is the number of layers in the
contracting path, the feature map generated by the first transpose
convolutional up-sampling in the additional expansive path can be
formally written as
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Fua
1 ¼ De ConvðFdÞ: ð3Þ
Then, with the skip-connection operation, the feature map gen-

erated by the jth (j > 1) transpose convolutional up-sampling in the
additional expansive path can be formally defined as

Fua
j ¼ De ConvðConcatðFua

j�1;Fd�jÞÞ; ð4Þ
where Concatð�Þ denotes the concatenation operation.

Similarly, the feature map generated by the first transpose con-
volutional up-sampling in the original expansive path can be for-
mally defined as

Fuo
1 ¼ De ConvðFdÞ: ð5Þ

Furthermore, the feature map generated by the jth (where j > 1)
transpose convolutional up-sampling in the original expansive
path can be formally defined as

Fuo
j ¼ De ConvðConcatðFuo

j�1;ConcatðFua
j�1;Fd�jÞÞÞ; ð6Þ

where ConcatðFuo
j�1;ConcatðFua

j�1;Fd�jÞÞ represents the operations

that first concatenate Fua
j�1 with Fd�j and then concatenate the

resulting feature map with Fuo
j�1.

Finally, the auxiliary segmentation loss at the additional expan-
sive path is formally defined as

La ¼ BCEðConv64�LðFua
d�1Þ;MaskÞ; ð7Þ

where L is the number of channels of the given segmentation anno-
tations, Conv64�Lð�Þ is a convolutional operation whose number of
input channels is 64, and the number of output channels is
L;BCEð�Þ is the binary cross-entropy loss, and Mask denotes the cor-
responding segmentation annotations of input medical images.
Similarly, the segmentation loss at the original expansive path can
be formally written as

Ls ¼ BCEðFuo
d�1;MaskÞ: ð8Þ

Consequently, x-Net is learned by a dual supervision loss that
considers both the segmentation lossLs and the auxiliary segmen-
tation loss La, formally,

Ldual ¼ kLa þ ð1� kÞLs; ð9Þ
where k is a hyperparameter that controls the relative importance
of La and Ls in the dual supervision loss.

3.2. Multi-Dimensional Self-Attention

In x-Net, we propose to utilize a multi-dimensional self-
attention (MDSA) mechanism to remedy the irrelevant information
problem using two consecutive self-attention [44] modules, dense
spatial position attention (DSPA) and channel attention (CA), to
capture features’ self-dependencies in the spatial and channel
dimensions, respectively. Generally, in DSPA, the importance of a
position in a feature map is determined by its dependencies with
all other positions in the same feature map; similarly, in CA, the
importance of a channel is determined by its dependencies with
all other channels. Consequently, by measuring the importance of
features in two different dimensions, MDSA will describe the
importance of features more comprehensively; furthermore, since
CA and DSPA are both based on self-attention, MDSA will not
encounter the same problem as Attention U-Net. We also note that,
in Fig. 1, multi-dimensional self-attention (MDSA) blocks are
added and only added into skip connections between the addi-
tional expansive path and the original expansive path; this is to
make the segmentation model capable of conducting self-
attention operations on all feature maps that are sent to original
expansive path, while avoiding redundant computations.
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Specifically, MDSA first uses a dense spatial position attention
(DSPA) module to capture the spatial dependencies between each
position in a feature map and all the positions in a dense feature
matrix (called dense positions), where the dense feature matrix is
generated by the corresponding feature map using a dilated convo-
lution block (denoted D conv in Fig. 1). The reason of using the
dilated convolution block to generate dense feature matrices
instead of directly using the original feature map is to decrease
the size of the feature representation, which not only greatly
reduces the time and memory consumption but also helps MDSA
to achieve even better segmentation performances (as shown in
Section 4.7). Consequently, the feature value at a given position
on the feature map is obtained by summarizing weighted feature
values at all positions on the dense feature matrix, and the weights
are based on the feature similarities between the given position on
the feature map and the corresponding dense positions. With the
help of DSPA, the features of small objects that are not salient on
the feature map can now be enhanced using the salient features
on the dense feature matrix that are highly similar to them, even
if the salient features are extracted from regions that are far away
from the small objects on the feature map.

The detailed operations and formal definitions of dense spatial
position attention (DSPA) are as follows. In Fig. 1, the input feature

map of DSPA, M 2 RC�H�W , generated at the jth layer of the addi-
tional expansive path is obtained by concatenating the feature

maps at the jth layer of the additional expansive path, Fua
j , and

the ones from the corresponding layer of the contracting path,
Fd�j�1. Formally,

M ¼ ConcatðFua
j ;Fd�j�1Þ; ð10Þ

where d is the total number of layers of the contracting path.
We first reshape the input feature map M to RC�N , where N is

the total number of pixels in each channel. M is then sent into a
dilated convolution block to generate a dense feature matrix
D 2 RC�K , where K is a hyperparameter representing the number
of dense features in each channel of D. Afterward, we perform a
matrix multiplication between the transpose of M and D, and use
a softmax operation to calculate the dense spatial attention matrix
A 2 RN�K . Formally,

aj;i ¼ expðDi �MjÞ
XN

i¼1

expðDi �MjÞ
; ð11Þ

where aj;i is an element of the dense spatial attention matrix A

located at the jth raw and the ith column, measuring the impact of

the ith feature of the dense feature matrix D on the jth feature of
the input feature map M.

A matrix multiplication is conducted between D and the trans-
pose of A, whose result is then added to M using an element-wise
sum operation. Finally, we reshape the summation result to get the
final output feature map O 2 RC�H�W of DSPA. Formally,

Oj ¼ kp
XN

i¼1

ðaj;iDiÞ þMj; ð12Þ

where kp is denoted as a strength coefficient, whose value is initial-
ized to 0, and it is gradually learned to give appropriate importance
to the spatial position attention map.

Similarly, a channel attention (CA) module is then used in
MDSA to capture the channel dependencies between any two
channel maps using also a self-attention procedure, where each
channel map is updated by summarizing all weighted channel
maps. Consequently, the inconspicuous features of small objects
in a given channel map can now be enhanced by the salient fea-
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tures in other similar channel maps, which thus further remedies
the information loss of small objects.

The detailed operations and formal definitions of channel atten-
tion (CA) are as follows. As shown in Fig. 1, given an input feature
map of CA, M0 2 RC�H�W , we first reshape M0 to RC�N , and then per-
form a matrix multiplication between the transpose of M0 and M0,
and use a softmax operation to calculate the channel attention
matrix A0 2 RC�C . Formally,

a0j;i ¼ expðM0i �M0jÞ
XN

i¼1

expðM0i �M0jÞ
; ð13Þ

where a0j;i is an element of the channel attention matrix A0 located
at the jth raw and the ith column, measuring the influence of the ith

channel on the jth channel.
A matrix multiplication is conducted betweenM0 and the trans-

pose of A0, whose result is then added to M0 using an element-wise
sum operation. Finally, we reshape the summation result to get the
final output feature map O0 2 RC�H�W of CA. Formally,

O0j ¼ kc
XN

i¼1

ða0j;iM0iÞ þM0j; ð14Þ

where kc controls the importance of the channel attention map over
the input feature map. Similarly to kp; kc is also initially set to 0 and
gradually learned in the model’s training stage.

3.3. Diversely-Connected Multi-Scale Convolution

Another shortcoming of U-Net is that there exists a semantic
disparity between the feature maps generated by the contracting
path and the expansive path [17]. Therefore, the performances of
U-Net-based segmentation models may be weakened if we con-
catenate these feature maps directly using skip connections. Actu-
ally, this problem also exists in the above proposed method: even if
we have applied multi-dimensional self-attention on the skip con-
nections of our segmentation model, MDSA only uses attention
operations to highlight or suppress the information in the feature
maps, but cannot effectively bridge the semantic gaps between
the feature maps generated in the contracting path and the expan-
sive path.

Therefore, in this work, a new multi-scale solution, diversely-
connected multi-scale convolution (DC-MSC), is proposed to
resolve the semantic disparity problem. Different from U-Net++,
DC-MSC does not rely on deeper feature maps to get multi-scale
features. Instead, it uses solely the feature maps generated in the
given layer as the inputs and utilizes convolution kernels with dif-
ferent sizes to generate feature maps that contain feature informa-
tion of different scales. The multi-scale feature maps are then fused
to bridge the semantic gaps. Since all the multi-scale feature maps
generated by the DC-MSC block at a given skip connection are
based on the same source feature maps, and do not use any feature
maps from deeper layer, the feature information of small objects
can be retained in the generated multi-scale feature maps to a
greater extent. Therefore, DC-MSC is a better choice for accurate
small object segmentation.

Specifically, as shown in Fig. 1, by denoting the given input fea-
ture maps as X, DC-MSC first sends X to a convolution block with
the kernel size of 5� 5 to get feature maps X1, whose size is the
same as X. Formally,

X1 ¼ Conv 5� 5ðXÞ: ð15Þ
Then, X1 is added to X using an element-wise sum operation,

and the summation result is processed by a convolution block with
the kernel size of 3� 3 to get feature maps X2. Formally,



Table 1
The information of datasets, where the average object sizes are in pixels.

Datasets Source Patients/ Training Set Validation Set Testing Set Avg. Obj. Size

Samples Samples Images Samples Images Samples Images Organ Tumor

Kidney KiTS19 [13] 210 147 31878 21 4781 42 8765 5568 2613
Pancreas Decathlon [30] 281 197 18397 28 3088 56 5026 1589 640
Liver Decathlon [30] 131 92 31982 13 9466 26 16566 17609 3689
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X2 ¼ Conv 3� 3ðSumðX;X1ÞÞ: ð16Þ
Similarly, X2 is added to X and the summation result is further

processed by a 1� 1 convolution block to obtain feature maps X3.
Formally,
X3 ¼ Conv 1� 1ðSumðX;X2ÞÞ: ð17Þ
Finally, we concatenate all feature maps X; X1; X2, and X3, and

apply another 1� 1 convolution on the concatenation result to
obtain the final output multi-scale feature maps Y. Formally,
Y ¼ Conv 1� 1ðConcatðX;X1;X2;X3ÞÞ: ð18Þ
1 https://pytorch.org/
4. Experiments

4.1. Datasets

In order to evaluate the performances of our proposed x-Net in
diverse medical image segmentation tasks with different sizes of
segmenting objects, we conduct extensive experiments on three
computerized tomography (CT) image datasets (i.e., kidney, pan-
creas, and liver CT datasets), where each 3D CT sample is divided
into different number of 2D CT images (varying from a few hun-
dreds to more than a thousand), the images size is normalized to
512� 512, about 70% of the samples in each dataset are selected
as the training set, 10% as the validation set, and 20% as the testing
set. The details of these datasets are presented in the following and
their statistical information is shown in Table 1.

Kidney Data [13]: This is a public collection of segmented kid-
ney CT images from 210 patients treated with partial or radical
nephrectomy between 2010 and 2018. The average size of kidneys
in this dataset is about 5568 pixels (about 2:1% of the whole
image), while that of its tumors is about 2613 pixels (about 1:0%
of the whole image); since the objects in this dataset are generally
in medium size, it is selected in this work as a medium object seg-
menting task to show the performance of x-Net in segmenting
medium objects.

Pancreas Data [30]: This pancreas dataset is released byMemo-
rial Sloan Kettering Cancer Center (New York, NY, USA), containing
the CT samples and the corresponding segmentation annotations
of 281 patients undergoing resection of pancreatic masses. The
average size of pancreas in this dataset is about 1589 pixels (about
0:6% of the whole image), while that of its tumors is about 640 pix-
els (about 0:2% of the whole image); since the objects in this data-
set are in very small size, it is selected in this work to show the
superior performance of x-Net in the challenging small object
segmenting task.

Liver Data [30]: This public dataset contains the CT samples of
liver and its tumors for 131 patients, where the corresponding
semantic segmentation masks are provided by professional radiol-
ogists. The average size of livers in this dataset is about 17609 pix-
els (about 6:7% of the whole image), while that of its tumors is
about 3689 pixels (about 1:4% of the whole image); since the
objects in this dataset are in relatively large size, it is selected in
this work as a large object segmenting task.
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4.2. Baselines

In order to evaluate the performances of the proposed x-Net,
six state-of-art deep-learning-based image segmentation methods
FCN [25], U-Net [29], Attention U-Net [28], DANet [8], U-Net++
[47], and U-Net 3+ [16] are selected as baselines. The reasons of
selecting these six methods as the baselines are as follows. (i)
FCN is the first deep-learning-based end-to-end image segmenta-
tion model; (ii) U-Net is arguably the most widely adopted deep
model for medical image segmentation, and it is also used as the
backbone of the proposed x-Net; (iii)Attention U-Net and DANet
are the state-of-art solutions for the irrelevant information prob-
lem; and (iv) U-Net++ and U-Net 3+ are the state-of-art solutions
for the semantic disparity problem.

4.3. Implementation Settings

Our experiments are implemented using the PyTorch frame-
work1 and run on two NVIDIA GeForce GTX 2080Ti GPUs. The imple-
mentation details of the proposed x-Net are shown as follows. The
contracting path of x-Net consists of five layers, where each of the
first four layers is built using two sequential 3� 3 convolution oper-
ations and a 2� 2 max-pooling operation, and the fifth layer con-
tains only two 3� 3 convolution operations. The structure of the
additional expansive path is the same as that of the original expan-
sive path, both of which consist of four layers with two sequential
3� 3 convolution operations and a 2� 2 transpose convolutional
up-sampling operation in each layer. Furthermore, the numbers of
kernels in the 1st to 5th layer of the contracting path are
64;128;256;512, and 1024, respectively, while the numbers of ker-
nels in the 1st to 4th layer of the additional and original expansive
paths are 512;256;128, and 64, respectively. Finally, we add a
1� 1 convolution block at the output layer to change the number
of channels of the segmenting results from 64 to 2, depicting respec-
tively the segmentation masks of the organs and tumor lesions.

x-Net and all the baselines are trained using the Adam opti-
mizer with a mini-batch size of 2, where the weight decay param-
eter in Adam is set to 0:00015. The learning rate is initialized as
0:0001 and decays with the rise of the number of training epochs;
specifically, we first multiply the learning rate by a decay factor of
0:6 at the end of the 5th epoch and then repeatedly multiply it by
0.6 every three epochs during training. Finally, we have conducted
a grid search to investigate the effect of varying two hyperparam-
eters k (the training loss coefficient defined in Eq. (9), which con-
trols the weight of auxiliary loss and segmentation loss) and K
(the size of the dense feature metrics in the DSPA module) on
the segmentation performance of x-Net, and set k ¼ 0:15 and
K ¼ 256; detailed information on the grid search is presented in
Section 4.9. Dropout techniques [40] can also be applied to prevent
over-fitting.

4.4. Evaluation Metrics

To evaluate the segmentation performances of our proposed x-
Net and the state-of-art baselines, three widely used segmentation



Table 2
The results of our proposed x-Net and the state-of-the-art medical image segmentation baselines on three abdominal CT segmentation datasets with different sizes of
segmenting objects, where the best and the second best results are bold and underlined, respectively.

Architecture Kidney (Medium) Pancreas (Small) Liver (Large)

DSC PPV Sensi DSC PPV Sensi DSC PPV Sensi

FCN [25] 0.7869 0.7947 0.7717 0.5162 0.6068 0.5047 0.8024 0.7905 0.7992
U-Net [29] 0.8561 0.8666 0.8309 0.5870 0.6523 0.5612 0.8535 0.8669 0.8416

U-Net++ [47] 0.8879 0.9126 0.8725 0.6256 0.6902 0.6075 0.8992 0.9101 0.8851

Attention U-Net [28] 0.8864 0.9001 0.8714 0.6355 0.6924 0.6150 0.8840 0.8971 0.8753

DANet [8] 0.8819 0.8839 0.8837 0.6316 0.6688 0.6231 0.9031 0.9092 0.8981
U-Net 3+ [16] 0.8919 0.9005 0.8863 0.6329 0.6970 0.5742 0.9021 0.9172 0.8789

x-Net (ours) 0.9047 0.9339 0.8964 0.6495 0.7178 0.6349 0.9111 0.9230 0.9107
Improvement 0.0128 0.0213 0.0101 0.0140 0.0208 0.0118 0.0080 0.0058 0.0126

Fig. 2. Examples of visualized segmentation results of our proposed x-Net and the baselines on three CT datasets, where red masks are for organs, and blue masks are for
tumors.
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evaluation metrics, positive predictive value (PPV), sensitivity (Sensi),
and dice similarity coefficient (DSC), are adopted. The formal defini-
tions of DSC, PPV, and Sensi are as follows.

PPV ¼ TP
TPþFP ; Sensi ¼ TP

TPþFN ;

DSC ¼ 2�PPV�Sensi
PPVþSensi ¼ 2TP

2TPþFPþFN ;

where TP, i.e., true positive, is the number of positive pixels (i.e.,
pixels within the annotated organ or tumor areas) that are correctly
classified in the segmenting results; FP, i.e., false positive, is the
number of negative pixels (i.e., pixels within annotated background
areas) that are incorrectly classified as positive pixels; FN, i.e., false
negative, is the number of positive pixels that are incorrectly classi-
fied as negative pixels. Specifically, positive predictive value (PPV),
also known as precision [3], represents the proportion of positive
pixels that are correctly segmented to all the pixels that are classi-
fied as positive in the segmenting results. Sensitivity, also known as
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recall [3], is the proportion of positive pixels that are correctly seg-
mented to all the pixels that are annotated as positive in the ground
truths. Dice similarity coefficient (DSC), also known as F1-score [3],
is the harmonic mean of PPV and Sensi, which thus can evaluate the
model’s performances more comprehensively from the perspectives
of both PPV and Sensi.

4.5. Main Results

The experimental results ofx-Net and six state-of-the-art med-
ical image segmentation baselines on three abdominal CT segmen-
tation datasets with different sizes of segmenting objects are
shown in Table 2, while six examples of visualized segmentation
results are shown in Fig. 2.

As shown in Table 2, Attention U-Net and DANet are generally
better than FCN and U-Net on all datasets in terms of all
metrics. This is because the attention mechanism can assign the



Table 3
Ablation studies on three datasets with different sizes of segmenting objects, where the best results are bold.

Architecture Kidney (Medium) Pancreas (Small) Liver (Large)

DSC PPV Sensi DSC PPV Sensi DSC PPV Sensi

U-Net [29] 0.8561 0.8666 0.8309 0.5870 0.6523 0.5612 0.8535 0.8669 0.8416
U-Net with AEP 0.8614 0.8762 0.8459 0.5954 0.6771 0.5817 0.8601 0.8774 0.8591

U-Net with MDSA 0.8697 0.8906 0.8525 0.5993 0.6776 0.5872 0.8719 0.8767 0.8639
U-Net with DC-MSC 0.8756 0.9009 0.8546 0.6027 0.6789 0.5893 0.8823 0.8879 0.8750

U-Net with AEP + MDSA 0.8784 0.8995 0.8746 0.6062 0.6808 0.5923 0.8772 0.8936 0.8819
U-Net with AEP + DC-MSC 0.8902 0.9167 0.8818 0.6107 0.6905 0.6076 0.8993 0.9095 0.8893

x-Net (ours) 0.9047 0.9339 0.8964 0.6495 0.7178 0.6349 0.9111 0.9230 0.9107
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concatenated features with different weights to suppress irrele-
vant regions, while highlighting the salient features that are useful
for specific segmentation tasks. This proves the existence of the
irrelevant information problem and also proves that deep models’
segmentation performances can be improved by solving the irrele-
vant information problem using attention mechanisms. Then, we
observe that U-Net++ and U-Net 3+ consistently outperform FCN
and U-Net, which is because U-Net++ and U-Net 3+ alleviate the
semantic disparity problem by respectively applying nested dense
and full-scale skip connections to generate feature maps that con-
tain feature information with different scales. This thus proves that
the segmentation performance of models can be improved by alle-
viating the semantic disparity problem through multi-scale solu-
tions. Finally, we find that our proposed x-Net generally
outperforms all the baselines on all three datasets, which proves
that x-Net achieves better performances than the state-of-art
image segmentation solutions in diverse medical image segmenta-
tion tasks. The reasons of superior performances of x-Net are as
follows: (i) x-Net utilizes a multi-dimensional self-attention
(MDSA) mechanism and diversely-connected multi-scale convolu-
tion (DC-MSC) blocks to resolve both the irrelevant information
and the semantic disparity problems, (ii) our additional experi-
ments in Section 4.7 (resp., 4.8) proves that the proposed MDSA
mechanism (resp., DC-MSC blocks) can achieve a better improve-
ment in medical image segmentation than the state-of-the-art
attention mechanisms (resp., multi-scale solutions), and (iii) x-
Net additionally introduces an additional expansive path to
strengthen the model’s learning capability.

In addition, we also find in Table 2 that comparing to the perfor-
mances of the best baselines, x-Net generally achieves the highest
performance improvements on the pancreas dataset, while the
performance improvements are lowest on the liver dataset. This
is because the average sizes of segmentation objects in the liver
dataset are much larger than those in the pancreas dataset (about
10 times larger for organ and 5 times larger for tumor as shown in
Table 2), making the pancreas segmentation tasks suffer frommore
severe irrelevant information and semantic disparity problems
than the liver segmentation tasks. Consequently, this demonstrates
the following conclusions: (i) the smaller the segmenting objects,
the more severe the irrelevant information and semantic disparity
problems are; (ii) x-Net achieves superior medical image segmen-
tation performances by resolving the irrelevant information and
the semantic disparity problems using MDSA and DC-MSC.

Fig. 2 shows the visualized segmentation results of x-Net and
the baselines on six examples from three datasets. Specifically,
the kidney images (at the first two rows) show that: (i) the seg-
mentation results of FCN and U-Net are very incorrect in both kid-
ney and tumors and sometimes even missing the tumor objects;
(ii) those of U-Net++, Attention U-Net, DANet, and U-Net 3+ are rel-
atively better for segmenting a kidney, but their segmentation
results for the tumor objects are still poor; and (iii) the segmenta-
tion performance of x-Net is much better than the baselines, its
segmentation results for the small tumor objects are very close
to ground truths. Similarly, we have the following observations
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for the pancreas images. (i) FCN and U-Net can neither correctly
recognize and segment the pancreas nor the tumor; (ii) U-Net++,
Attention U-Net, DANet, and U-Net 3+ are better but their perfor-
mances in segmenting the edge areas of pancreas and tumor are
not satisfactory; and (iii) the segmentation results of the proposed
x-Net are best among all models. Similar observations are also
found for the liver images, especially for the case at the last row
of Fig. 2, where x-Net is the only model that correctly segments
most of the small tumor lesions within the given liver image.
Therefore, these visualized examples greatly demonstrate again
that by the proposed MDSA mechanism, DC-MSC blocks, and the
additional expansive path, x-Net remedies the drawbacks of the
existing deep segmentation models, and achieves much better per-
formances in medical image segmentation tasks, especially for
small objects.

4.6. Ablation Study

To show the effectiveness and necessity of the proposed three
advanced modules in x-Net, ablation studies are further con-
ducted, where several intermediate models that only use one or
two advanced modules are introduced and evaluated. Specifically,
the intermediate models are as follows: (i) U-Net with AEP is a
model that adds the additional expansive path into U-Net; (ii) U-
Net with MDSA is constructed by adding the multi-dimensional
self-attention (MDSA) module onto the skip connections of U-
Net; (iii) U-Net with DC-MSC is obtained by adding the
diversely-connected multi-scale convolution (DC-MSC) module
onto the skip connections of U-Net; (iv) U-Net with AEP + MDSA
integrates both the proposed additional expansive path and the
multi-dimensional self-attention module with U-Net; and (v) U-
Net with AEP + DC-MSC incorporates both the proposed additional
expansive path and the diversely-connected multi-scale convolu-
tion module into U-Net.

In Table 3, all five intermediate models outperform U-Net over
all three databases in terms of all metrics, which proves that the
proposed advanced modules are all effective to improve the perfor-
mance of U-Net in medical image segmentation tasks. Specifically,
we first compare the results of U-Net and U-Net with AEP, where
U-Net with AEP outperforms U-Net on all datasets in terms of all
metrics. This is because the additional expansive path can enhance
the deep model’s feature learning capability by obtaining features
that are more effective and robust for image segmentation. This
thus proves that it is effective to improve the segmentation mod-
el’s performance through adding an additional expansive path in
x-Net to achieve dual supervision. Then, it is observed that U-
Net with MDSA and U-Net with DC-MSC consistently outperform
U-Net in Table 3. This is because U-Net with MDSA (resp., U-Net
with DC-MSC) resolves the irrelevant information problem (resp.,
semantic disparity problem) using a novel attention mechanism
(multi-scale solution). Therefore, this proves the effectiveness of
the multi-dimensional self-attention mechanism and diversely-
connected multi-scale convolution blocks in medical image
segmentation tasks. Furthermore, we notice that U-Net with



Fig. 3. The results of incorporating multi-dimensional self-attention and the state-of-the-art attention mechanisms into U-Net.

Table 4
The numerical results of incorporating multi-dimensional self-attention and the state-of-the-art attention mechanisms into U-Net, where the best results are bold.

Architecture Kidney Pancreas Liver

DSC PPV Sensi DSC PPV Sensi DSC PPV Sensi

U-Net with SE [14] 0.8656 0.8748 0.8415 0.5919 0.6593 0.5747 0.8582 0.8677 0.8524
U-Net with SK [22] 0.8673 0.8837 0.8479 0.5862 0.6571 0.5642 0.8632 0.8731 0.8603
U-Net with PPCA [8] 0.8609 0.8739 0.8438 0.5971 0.6669 0.5635 0.8579 0.8685 0.8439
U-Net with MDSA 0.8697 0.8906 0.8525 0.5993 0.6776 0.5872 0.8719 0.8767 0.8639
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AEP + MDSA is always better than U-Net with AEP and U-Net with
MDSA. This is because the two advanced modules, AEP and MDSA,
improve the segmentation performance of U-Net by tackling differ-
ent problems, i.e., AEP is used to get more effective and robust fea-
tures, while MDSA is used to resolve the irrelevant information
problem. This thus proves that it is reasonable to incorporate both
AEP and MDSA into the U-Net to achieve more accurate segmenta-
tion results. Similar observations and conclusions are also obtained
by comparing U-Net with AEP + DC-MSC to U-Net with AEP and U-
Net with DC-MSC. Finally, we find that x-Net constantly achieves
much better performances than U-Net with AEP + MDSA and U-Net
with AEP + DC-MSC. This is because the three advanced modules
target at resolving different problems, and can complement each
other to better improve the deep model’s segmentation perfor-
mance. Therefore, the above observations demonstrate that the
proposed three advanced modules are all effective and essential
for x-Net to achieve the superior medical image segmentation
performances.

4.7. Multi-Dimensional Self-Attention vs. the State-of-the-art
Attention Mechanisms

Further experiments are conducted to compare our proposed
multi-dimensional self-attention (MDSA) module with the state-
of-the-art attention mechanisms, namely, squeeze-and-excitation
(SE) attention [14] (the state-of-the-art channel-wise attention),
selective kernel (SK) attention [22] (the state-of-the-art spatial
attention), and parallel position and channel attention (PPCA)[8]
(the state-of-the-art multi-dimensional attention), where the dif-
ferent attention blocks are respectively incorporated with U-Net
to show their different capabilities in enhancing U-Net’s perfor-
mances in medical image segmentation tasks. The corresponding
experimental results are depicted in Fig. 3 and recorded in Table 4.
The results show that incorporating U-Net with our proposed
MDSA module can achieve much better performance improve-
ments than using the state-of-the-art channel-wise attention
(SE), spatial attention (SK), and multi-dimensional attention
(PPCA) mechanisms, in terms of all metrics on all three datasets.
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This finding thus proves that MDSA is a better choice for medical
image segmentation tasks than the state-of-the-art attention
mechanisms.

4.8. Diversely-Connected Multi-Scale Convolution vs. the State-of-the-
art Multi-Scale Solutions

Similarly, to investigate the influence of different multi-scale
solutions on the performance of medical image segmentation,
experiments are further conducted to compare the diversely-
connected multi-scale convolution (DC-MSC) module with the
state-of-the-art multi-scale solutions, namely, pyramid scene pars-
ing (PSP) module [45], parallel convolution (PC) module [36], and
parallel dilated convolution (PDC) module [41]), where the multi-
scale modules are integrated into the skip connection of U-Net.

Generally, as shown in both Fig. 4 and Table 5, the model of
combining U-Net with our proposed DC-MSC module (denoted
U-Net with DC-MSC) outperforms the models of combining U-
Net with the state-of-the-art multi-scale solutions in terms of all
metrics on all three datasets, which proves that the proposed
DC-MSC module can achieve a more accurate medical image seg-
mentation than the state-of-art multi-scale solutions. Specifically,
the performances of all the multi-scale convolution based models
(U-Net with PC, U-Net with PDC, and U-Net with DC-MSC) are bet-
ter than that of the multi-scale pooling based model, U-Net with
PSP. This shows that applying multi-scale strategies on the convo-
lution operations may be better than on the pooling operations, so
in our DC-MSC, we apply the diversely-connected multi-scale
strategy on convolution operations. Furthermore, we note that U-
Net with DC-MSC is much better than U-Net with PC and U-Net
with PDC in all the cases, which is because DC-MSC connects the
various-sized convolutional operations diversely in both series
and parallel, while PC and PDC only connect them in parallel, mak-
ing DC-MSC capable of utilizing the generated multi-scale feature
maps more comprehensively. In summary, these findings clearly
demonstrate the effectiveness and reasonableness of the proposed
DC-MSC in achieving better medical image segmentation perfor-
mances than the state-of-the-art multi-scale solutions.



Fig. 4. The results of incorporating diversely-connected multi-scale convolution and the state-of-the-art multi-scale solutions into U-Net.

Table 5
The numerical results of incorporating diversely-connected multi-scale convolution and the state-of-the-art multi-scale solutions into U-Net, where the best results are bold.

Architecture Kidney Pancreas Liver

DSC PPV Sensi DSC PPV Sensi DSC PPV Sensi

U-Net with PSP [45] 0.8575 0.8764 0.8391 0.5893 0.6639 0.5674 0.8546 0.8695 0.8561
U-Net with PC [36] 0.8587 0.8735 0.8422 0.5889 0.6658 0.5715 0.8663 0.8715 0.8552
U-Net with PDC [41] 0.8671 0.8825 0.8467 0.5974 0.6706 0.5864 0.8759 0.8797 0.8663
U-Net with DC-MSC 0.8756 0.9009 0.8546 0.6027 0.6789 0.5893 0.8823 0.8879 0.8750
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4.9. Effect of Varying Hyper-Parameters K and k

As shown in Eq. 9, a coefficient k is used in the final segmenta-
tion loss function ofx-Net to control the relative importance of the
segmentation loss Ls and the auxiliary segmentation loss La.
Therefore, the value of k will greatly influence the model’s training
quality and also the final segmentation performances. Similarly, as
a hyperparameter, K is introduced into the dilated convolution
block of multi-dimensional self-attention (MDSA) module to
decide the number of dense features used in the dense feature
matrix D, whose value thus greatly affects the effectiveness of
MDSA as well as the model’s final segmentation performances.
Consequently, experiments are conducted to investigate the effect
of varying the hyperparameters k and K on the model’s training
quality in terms of validation losses.

Since the segmentation loss Ls is obviously more important
than the auxiliary segmentation loss La, the value of k is selected
incrementally from 0:05 to 0:3 with a step of 0:05. To enhance the
efficiency of computing using GPU, the value of K is set to 2n, where
the value of n is searched in f4;5;6;7;8;9g. Generally, in Fig. 5, we
observe thatx-Net obtains the lowest validation loss when K = 256
and k=0:15, which are thus used as the final selected values.
Fig. 5. Validation losses of x-Net under different settings of hyper-parameters K
and k.
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Moreover, the results in Fig. 5 show as another important finding
that the validation losses of x-Net fluctuate with the increase of
the value of K. This finding thus further proves the reasonableness
of using a dense feature matrix, instead of using the input feature
map directly, in the MDSA modules ofx-Net: Since the accuracy of
the spatial dependency estimation in MDSA is not guaranteed to
increase with the rise of the size of the dense feature matrix D, it
is reasonable to say that using a dense feature matrix whose size
is much smaller than the input feature map in MDSA does not nec-
essarily weaken the accuracy of the feature weight estimation and
the model’s feature learning capability, while it is guaranteed to
greatly enhance the model’s training efficiency. So, with a proper
tuning of the hyperparameter K, using the dense feature matrix
can greatly increase not only the efficiency but also the effective-
ness of x-Net.

4.10. Training and Inference Efficiency

Table 6 shows the training time–cost training time–cost (in
hours per epoch) and inference efficiency (in images per second)
of x-Net and the state-of-the-art baselines. Generally, we notice
that the more complicated the model is, the lower its training
and inference efficiency. Specifically, we have the following obser-
vations: (i) By applying attention mechanisms to resolve the irrel-
evant information problem, Attention U-Net and DANet have lower
training and inference efficiency. (ii) Using multi-scale solutions to
overcome the semantic disparity problem inevitably enhances the
training time–cost and reduces the inference efficiency of U-Net++
and U-Net 3+. (iii) Due to the use of additional expansive path for
dual supervision and using the more powerful but also more com-
plicated modules, MDSA and DC-MSC, to resolve the irrelevant
information and semantic disparity problems, x-Net inevitably
has higher time–cost and lower inference efficiency than the base-
lines. However, the training and inference efficiency of x-Net is
still close to that of U-Net 3+, so considering the increasing com-
puting capability of current facilities, sacrificing a limited extent
of efficiency for better accuracy is acceptable for medical image
segmentation tasks.



Table 6
The training time–cost (in hours per epoch) and inference efficiency (in images per second) of x-Net and the state-of-the-art baselines.

FCN U-Net Attention U-Net U-Net++ DANet U-Net 3+ x-Net

Kidney 0.2373 0.2177 0.3834 1.1957 1.5222 3.0690 3.7063
Pancreas 0.1001 0.1012 0.1783 0.6074 0.6653 1.2577 1.6846
Liver 0.1916 0.1893 0.3195 1.1244 1.3896 2.8306 3.2257

Inference 20.52 19.57 16.75 8.71 19.05 6.66 4.22
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5. Discussion and Future Work

5.1. Social Impact of x-Net

The proposed x-Net can be widely used in a lot of clinical sce-
narios, where the work of segmenting medical images is needed to
effectively reduce the workload of doctors and improve the effi-
ciency and accuracy of medical image segmentation. We take
radiotherapy for cancer as an example, where doctors need to
accurately delineate the outline of the tumor area on the patient’s
3D CT images as the radiotherapy target area. However, each 3D CT
is composed of hundreds of slices, and will take an experienced
doctor several hours to annotate them one by one. Moreover, since
the edge of the tumor is uneven and very difficult to delineate, to
ensure the accuracy and comprehensiveness of labeling, it is usu-
ally necessary for multiple doctors to label the same image inde-
pendently, and then gather them together as the final results.
Consequently, the whole image segmentation process is very
time-consuming and laborious; this not only greatly consumes
the medical social resources (e.g., the time of experienced doctors),
but may also bring long waiting times for the patient and delay the
treatment. By applying our proposed automatic segmentation
solution, x-Net, in such clinical practices, the model can generate
the draft segmentation results automatically in seconds, which can
then be sent to experienced doctors for fine-tuning. This thus
greatly reduces the workload of doctors, and saves both time and
money for patients.
5.2. Limitation and Future Work

Despite achieving generally a superior performance in medical
image segmentation tasks, we also observe in the experimental
results that the performance of all segmentation models, including
x-Net, on the Pancreas dataset are much worse than those on the
Kidney and Liver datasets. This is because the shape and appear-
ance of the pancreas in medical images are much more various
than those of the kidney and liver, so it is more difficult for the
deep model to learn its morphological features. Therefore, it is an
interesting future work to further improve the feature learning
modules in x-Net to resolve this problem and make x-Net more
applicable in the segmentation task of the pancreas and other mor-
phologically various objects. In addition, in the future, it will be
interesting to also conduct more experiments to investigate the
performances of x-Net in more diverse medical image segmenta-
tion tasks with different types of medical images, e.g., MRI, PET,
X-ray, etc.
6. Conclusion

In this work, we identified two shortcomings of U-Net, namely,
the irrelevant information problem and the semantic disparity
problem, and proposed a novel dual supervised medical image seg-
mentation model, called x-Net, to remedy these problems and
achieve a more accurate medical image segmentation using a
multi-dimensional self-attention (MDSA) mechanism and
diversely-connected multi-scale convolution (DC-MSC) blocks.
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Specifically, the technical contributions of x-Net are threefold:
We first integrate an additional expansive path into U-Net to intro-
duce an extra supervision signal, called auxiliary loss, to obtain a
more effective and robust image segmentation by the dual super-
vision. Then, the MDSA mechanism is proposed inx-Net to resolve
the irrelevant information problem by using two consecutive self-
attention modules to capture features’ importance in both spatial
and channel dimensions. Finally, to remedy the semantic disparity
problem, DC-MSC blocks are proposed and integrated into the skip
connections of x-Net, where several multi-scale convolutional
operations are diversely connected in both series and parallel to
utilize the generated multi-scale feature maps more comprehen-
sively. Extensive experimental studies are conducted on three
real-world medical image segmentation datasets, and the results
show that the proposed x-Net can significantly outperform the
state-of-the-art image segmentation solutions in medical image
segmentation tasks in terms of all metrics, and the additional
expensive path, MDSA, and DC-MSC are all effective and essential
for x-Net to achieve the superior segmentation performance.
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