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Toward Knowledge as a Service (KaaS):
Predicting Popularity of Knowledge Services

Leveraging Graph Neural Networks
Haozhe Lin, Yushun Fan, Jia Zhang, Senior Member, IEEE, Bing Bai, Zhenghua Xu, Thomas Lukasiewicz

Abstract—Knowledge services are becoming a rising star in the family of XaaS (Everything as a Service). In recent years, people are
more willing to search for answers and share their knowledge directly over the Internet, which drives the knowledge service ecosystem
prosperous and quickly evolve. In this paper, we aim to predict the popularity of knowledge services, which will benefit the downstream
industries that provide Knowledge as a Service (KaaS). Toward such a task, the spatial interactions (e.g., hyperlinks in Wikipedia) and
temporal observations (e.g., page views) provide crucial information. However, it is difficult to utilize this information due to: (i)
complicated and different usage observations, (ii) intricate and evolutionary spatial interactions, and (iii) small world trait of the network.
To tackle such issues, we propose Evolutionary Graph Convolutional Recurrent Neural Networks (E-GCRNNs) to simultaneously
model both temporal and spatial dependencies of knowledge services from their evolving networks. Specifically, an elementary unit
(called E-GCGRU) is designed to dynamically perceive the evolutionary spatial dependencies, aggregate spatial information of
knowledge services, and model the temporal patterns by considering the records of one sequence and its neighbors simultaneously.
Additionally, a localized mini-batch training scheme is developed, which allows the E-GCRNNs to work on large-scale knowledge
services networks and reduce the prediction bias caused by the small world trait. Extensive experiments on real-world datasets have
demonstrated that the proposed E-GCRNNs outperform baselines in terms of prediction accuracy, especially with the prediction range
being longer, while remaining computationally efficient.

Index Terms—Knowledge as a Service, Popularity Prediction, Spatiotemporal Prediction, Graph Convolutional Networks
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1 INTRODUCTION

IN the era of big data, people are no longer only satisfied
with raw Data as a Service. Instead, people desire to

gain the insights behind the data – the knowledge. With
the penetration of the services computing techniques in the
last two decades, increasingly more knowledge has been
wrapped up as universally accessible services and pub-
lished online. In contrast to traditional knowledge sharing
over the Internet, such as static web pages, knowledge-
oriented services (or knowledge services in short) typically
aim to provide dynamic, context-aware, and customized
information delivery. For example, when users ask ques-
tions on zhihu.com or quora.com, the popular knowledge-
oriented question-and-answer platforms, it will trigger a
backend API and generate discriminatingly ranked answer
lists (i.e., knowledge) to users. Furthermore, the service
may proactively invite users to answer others’ questions by
identifying their specialty. In such a context, the concept
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of Knowledge as a Service (KaaS)1 has been coined and
becoming a rising star in the family of Everything as a
Service (XaaS), joining Software as a Service (SaaS), Data as a
Service (DaaS), Infrastructure as a Service (IaaS), and so on.
A number of well-known products of KaaS have emerged
in the recent years, such as Wikipedia2, Google Scholar3, and
Quora4.

The prosperity in knowledge services provides signifi-
cant opportunities for service management, discovery, and
recommendation. Such visions motivate us to study the
predictions of the popularity of knowledge services, which
may benefit many downstream service industries. For ex-
ample, if we can identify the potentially popular ones from
thousands of academic papers, the quality of paper (knowl-
edge service) recommendations would be improved. In par-
ticular, the popularity of knowledge services can be reflected
by their usage tendency, like page views in Wikipedia, cita-
tion counts in Google Scholar, and likes in Quora. Throughout
this paper, we will use two terms interchangeably, knowledge
service and service.

The historical usage observations and the interaction
relationships among knowledge services provide useful in-
formation for predicting the usage tendency or popularity
of the services. However, to fully utilize them, three unique
traits demand meticulous considerations:

1. https://en.wikipedia.org/wiki/Knowledge as a service
2. https://www.wikipedia.org/
3. https://scholar.google.com/
4. https://www.quora.com/

https://en.wikipedia.org/wiki/Knowledge_as_a_service
https://www.wikipedia.org/
https://scholar.google.com/
https://www.quora.com/
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Fig. 1: Spatial dependencies and temporal usage observa-
tions of real-world Wikipedia knowledge services. The upper
part shows the hyperlinks among 103 random Wikipedia
entries. The lower part shows the usage observations of 7
knowledge services and their evolutionary spatial depen-
dencies.

• Complicated and different temporal observations.
Knowledge services usually present complicated
temporal traits, including periodicity, nonlinearity,
and (non)stationarity. For example, the service Christ-
mas5 is intensively visited in a one-year periodicity,
while presenting complex nonlinearity during the
other time. Besides, different knowledge serivces
generally present different usage patterns. For ex-
ample, the observations of the service Christmas are
distinctly different from those of other services, like
United States presidential election.

• Intricate and evolutionary spatial interactions. The
usage tendency or popularity of one knowledge
service not only depends on the historical usage
observations of the service itself, but also more or less
relies on the invocation records of its related services.
Take Figure 1(a) as a real-world example, which
shows 103 entries and their inter-relationships (i.e.,
hyperlinks) from Wikipedia. Since the service Batman
is connected with six other services through hyper-
links, its page views could also come from its (one or
multiple-step reachable) neighbors. Based on such a
fact, the structure of the knowledge service network,
presenting non-euclidean and evolutionary, makes it
difficult to utilize such information. As shown in Fig-

5. https://en.wikipedia.org/wiki/Christmas

ure 1(b), the service Batman highly correlates to the
service Wonder Woman in February 2016; however,
their spatial dependency drops dramatically in May
2017.

• Small world trait. Our previous study reveals a
service network presents a small world characteris-
tic, meaning that most of the services are connected
through several hops, while the others are either iso-
lated or reside in small clusters. Such characteristic
also poses more significant challenges for aggregat-
ing local spatial information in practice. On the one
hand, popular services will cause almost unaccept-
able footprints, if we consider all their connected
neighbors. On the other hand, long-tailed services
may waste computational resources since the num-
ber of their neighbors are quite small.

In summary, given the aforementioned intractable facts,
making accurate predictions of the popularity of knowledge
services remains an arduous task.

Many existing works have attempted to predict the
popularity or usage tendency of knowledge [1], [2], [3], [4].
However, most of them make predictions individually with-
out considering spatial dependencies among knowledge
services. In recent years, with the advancement of graph
convolutional networks (GCNs) [5], [6], [7], researchers have
been able to effectively aggregate information and extract
features from non-Euclidean data structures, such as cita-
tion networks, traffic networks, (software) service networks,
and so on. Based on graph convolutional operators, diffu-
sion convolutional recurrent neural networks (DCRNNs) [8]
and spatiotemporal graph convolutional neural networks
(STGCNNs) [9] were developed to predict traffic flow and
have shown significant improvements, which are the state
of the arts for making spatiotemporal predictions. However,
different from the relatively static physical spatial dependen-
cies in traffic networks, in our problem domain, the interac-
tions among knowledge services, regarded as virtual ones,
are dynamic and evolve frequently with time. For exam-
ple, people could frequently edit the content of Wikipedia
entries, causing changes in the relations among them. As
a result, existing works assuming the interaction graph is
fixed cannot solve our evolutionary problem. Besides, to
aggregate spatial information for the service vertices of
interest, it requires the model to include their neighbors
as inputs. Many existing works based on GCNs do not
consider the large scale of vertices, and directly train their
models in full-batch setting [8]. However, since the number
of knowledge services is large and keeps increasing, such
methods are impractical for our problem.

In order to model both spatial and temporal depen-
dencies, and adapt to the evolutionary ones, we propose
Evolutionary Graph Convolutional Recurrent Neural Net-
works (E-GCRNNs) to predict the tendency of knowledge
service invocation. In more detail, graph convolutional oper-
ators first aggregate localized information. In the meantime,
a dynamic module identifies the changes of graphs, and
triggers the model to make a response. Finally, a Gated
Recurrent Unit (GRU)-like structure controls the temporal
dependencies and makes predictions. Besides, we propose
a localized mini-batch training scheme to efficiently allevi-

https://en.wikipedia.org/wiki/Christmas
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Fig. 2: Overall architecture of E-GCRNNs. The E-GCGRU receives the current observation Xt, previous hidden states Ht−1,
and evolutionary interaction graphs Gt as inputs. To predict the trend of the knowledge service of interest, i.e., the yellow
node, the past values of it and its neighbors, i.e., the purple nodes, are sampled and aggregated by E-GCGRU as hidden
states Ht. At the same time, Ht is regressed by a fully connected layer (FC) to produce the prediction Ŷ t+1. When training,
we applied scheduled sampling to randomly decide whether to replace the observation with the last prediction.

ate the computational burden, using a divide-and-conquer
strategy. To our knowledge, this is the first attempt to study
the prediction of knowledge service invocation tendency by
learning both temporal and dynamic spatial dependencies.
Our main contributions are three-fold:

• We have proposed evolutionary graph convolutional
recurrent neural networks (E-GCRNNs), which
can learn the spatiotemporal dependencies among
knowledge service usage sequences, flexibly adapt
to evolutionary ones, and eventually make accurate
predictions.

• We have developed a localized mini-batch training
scheme, where large-scale knowledge services are
divided into independent blocks to make the training
procedure more efficient.

• We have designed and conducted a collection of
experiments on real-world datasets, which show that
E-GCRNNs outperform state-of-the-art algorithms in
terms of prediction accuracy, especially when the
prediction period is longer.

The remainder of this paper is organized as follows.
Section 2 gives notations and mathematically restates the
knowledge service invocation prediction problem. Section 3
introduces the proposed model, and Section 4 describes the
training details. Section 5 reports our experimental results.
Section 6 reviews related work. Finally, Section 7 draws
conclusions.

2 PRELIMINARIES

In this section, we firstly present the definitions of notations,
as well as the spatial dependencies among knowledge ser-
vices, namely the service dependency graph, then formally
introduce the problem definition.

2.1 Notation Definition
Definition 1 (Usage observations of knowledge services).
Given one knowledge service, its usage observations refer to its
usage times in the past P units of time. Therefore, we denote
the usage observations of knowledge service by a time series xi,
where xi can be broken down to xi = {x1

i , x
2
i , . . . , x

P
i }. More

specifically, xt
i (t ∈ [1, P ]) represents the number of usage times

for service i in the past t-th day. In the problem that we consider,
there are N services in total, so we denote the usage records of all
services by X = {x1;x2; . . . ;xN}.

Definition 2 (Usage tendency of knowledge service). The us-
age tendency of a knowledge service refers to the usage times of the
service in the next Q units of time, which reflects the popularity of
knowledge services. In this paper, we denote the usage tendency of
knowledge service by ŷi = {ŷP+1

i , ŷP+2
i , . . . , ŷP+Q

i } , where
ŷti (t ∈ (P + 1, P + Q]) represents the predicted value of
invocation times for service i in the next t-th day. Likewise,
Ŷ = {ŷ1; ŷ2; . . . ; ŷN} denotes the tendency of a collection of
knowledge services that is expected to be used.

Definition 3 (Knowledge service network). To represent the
spatial dependencies among knowledge services, we construct a
service dependency graph Gt = (V, E ,Wt), with vertices V as
services set, edges E as the dependencies set, and weights Wt as
the intensities of corresponding dependencies at different times.
Specifically, Wt can be broken down to wt

ij to represent the
interaction intensity between services i and j at time t.

In this paper, we regard distinct spatial dependencies
among knowledge services (e.g., citation in Google Scholar
and hyperlinks in Wikipedia) are continuous values, and try
to perceive their changes.

2.2 Problem Restatement
Problem (Predicting the usage tendency of knowledge ser-
vice). Given N knowledge services in a service ecosystem, our
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goal is to predict their usage tendency in the next Q units of
time, i.e., Ŷ = {ŷ1; ŷ2; . . . ; ŷN} for all services, based on
their previous P usage records during the past P units of time
observations, i.e., X = {x1,x2, . . . ,xN} for all services and
their evolutionary service dependency graph Gt.

3 MODEL ARCHITECTURE

In this section, we introduce our proposed E-GCRNNs
for predicting the usage tendency of knowledge services.
At a high level, E-GCRNNs apply vanilla RNN structure
without encoder-decoder structure, and the recurrent unit
– E-GCGRU aggregates information in close proximity, per-
ceives changing intensities, and extracts temporal features.
The overall architecture is shown in Figure 2.

3.1 Aggregate Spatial Influence

As mentioned in Section 1, to predict the tendency of one
knowledge service (i.e., the yellow node in Figure 2), not
only its past records should be considered, the observations
of its neighbors (i.e., the purple nodes) also matter. However,
unlike data with regular structure (e.g., image where local
feature of pixel can be aggregated through canonical convo-
lution in Figure 3 (a)), the structure of knowledge services
presents non-Euclidean property, which means we cannot
learn unified convolution kernels for the knowledge service
network. As shown in Figure 3 (b), for the vertices of interest
with green color, they have different numbers of first-order
neighbors. Therefore, we introduce advanced spectral graph
convolution to E-GCGRU for aggregating local features for
knowledge services in such an irregular network.

(a) canonical convolution (b) graph convolution

Fig. 3: Diagram of different convolutions.

To begin with, we represent the knowledge service
network G = (V, E ,W) in a form of matrix6, namely a
Laplacian matrix L, (L = D −A), where D and A refer to
the degree matrix and adjacency matrix of G, respectively.
Since we only consider the correlation relationship between
knowledge services in this paper7, which means the adja-
cency matrix A is symmetric, we have the symmetric nor-
malized Laplacian matrix, i.e., Lsym = I −D−1/2AD−1/2,
where I represents the identity matrix. Based on the Lapla-
cian matrix L8, we introduce the Chebyshev graph con-
volutional operator to aggregate information for service

6. In this section, we omit superscript t of Gt to simplify the following
equations.

7. As for the more challenging problem, namely modeling the causa-
tion in service invocation, we will leave it as a future work.

8. The following L refers to symmetric normalized Laplacian Lsym.

nodes from their neighbors, which can be formulated in
Equation (1)9:

fθ ⋆G Z = fθ(L)Z ≈
K−1∑
k=0

θkTk(L̃)Z, (1)

where fθ represents the graph convolutional filter with θ as
trainable parameter; Z represents the inputs of E-GCGRU,
and particularly, Z = [Xt,Ht−1] with Xt as the observa-
tions of all related services nodes at current time, e.g., all
colored nodes in Figure 2, and Ht−1 as the hidden states
from the last E-GCGRU; K represents a predefined order,
which determines the range of considered neighbors; L̃ rep-
resents the re-scaled Laplacian matrix to fit the application
condition of Chebyshev polynomial, i.e., L̃ = 2

λmax
L − I ,

with λmax as the largest eigenvalue of L; finally, Tk(L̃)
represents a recursive manner to aggregate information at
order k-th, and specifically, Tk(L̃) = 2L̃Tk−1(L̃)−Tk−2(L̃),
with T1(L̃) = L̃ and T0(L̃) = I .

Remarkably, Equation (1) presents great localized prop-
erty, which limits the information that can pass to the central
vertices to be within its K-step reachable neighbors. That is
because by utilizing the Chebyshev polynomial, the gradi-
ents recurrently flow through the approximation formula,
i.e., Tk(L̃) = 2L̃Tk−1(L̃) − Tk−2(L̃). Such property will be
helpful to design efficient training scheme.

3.2 Perceive Changing Interactions
Different from other problem domains that assume the
graph is fixed, we hold a view that the virtual spatial
dependencies among knowledge services evolve frequently,
which sometimes even lead to a change of graph structure.
For example, a breakthrough in Deep Learning, the attention
mechanism, could connect the domain knowledge of com-
puter vision and natural language processing more tightly.
Under such a situation, if the model cannot perceive such
changes in the graph, it may waste up-to-date information
or be misled by the outdated data when performing infer-
ence. Therefore, it is demanding to study how sequences
influence each other dynamically.

In this research, we found the Pearson coefficient can
serve as an efficient metric to quantify the correlations
between two service usage sequences. Therefore, we update
the coefficients dynamically, and the model can timely adapt
to the latest spatial dependencies and appropriately aggre-
gate information from one’s neighbors:

wt
ij =


E[(xt−τ:t

i −µi)(x
t−τ:t
j −µj)]

σiσj
if {i, j} ∈ E ,

0 otherwise.
(2)

where wt
ij represents the correlation or spatial dependency

between knowledge services i and j at time t; xt−τ :t
i repre-

sents the observation sequence of knowledge service i from
t−τ to t; µi and σi represent the corresponding average and
standard deviation of the observation sequence; and E(·)
represents the mean operator. Specifically, we only quantify
the spatial dependencies between two knowledge services if

9. Interested readers can refer to [6], [7], [10] for the details of the
definition, principle, and approximation of the graph convolution.
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there exist distinct connections (e.g., citation in Google Scholar
and hyperlinks in Wikipedia), i.e., {i, j} ∈ E .

Since the spatial dependencies change frequently, di-
rectly updating the correlations for all linkages may intro-
duce unacceptable computational costs in neural networks.
Consequently, we decide to make a trade-off between the
evolution assumption and computational complexity, and
further suppose W t remains fixed in a relatively short time
interval, so that the correlations can be updated in an accept-
able frequency. Our ideas are summarized in Algorithm 1.

Algorithm 1 Spatial dependencies updating algorithm
Input: service invocation sequences: X ; sparse adjacency
matrix: A; current moment: t.
Initialize: fixed interval: τ .
Output: adjacency matrix: A.

1: row, col ← A.indices()
2: P ←X[row, t− τ : t]
3: Q←X[col, t− τ : t]
4: µP , µQ ← mean(P ),mean(Q)
5: σP , σQ ← std(P ), std(Q)

6: W t ← mean[diag((P−µP )(Q−µQ)⊤)]
σPσQ

▷ Equation (2)
7: At ← construct sparse matrix(row, col,W t)
8: return At

Algorithm 1 describes a process to calculate pairwise
Pearson correlation coefficients (Equation (2)) for all in-
cluded nodes in a sub-graph in a matrix form. Specifically,
we construct two service invocation records matrices, i.e.,
P and Q, corresponding the indices of the sparse adjacency
matrix A, and then apply Equation (2) to these two matrices.

3.3 Learn Temporal Dependency
Based on extracted spatial features, we follow the structure
of DCGRUs [8] to apply a gated mechanism to capture the
long- and short-term temporal dependencies. In contrast
to DCGRUs, we consider the evolution of the dependency
graph, and then formulate E-GCGRUs by Equation (3):

rt = σ(fr ⋆Gt [Xt,Ht−1] + br)

ut = σ(fu ⋆Gt [Xt,Ht−1] + bu)

Ct = tanh(fC ⋆Gt [Xt, (rt ⊙Ht−1)] + bC)

Ht = ut ⊙Ht−1 + (1− ut)⊙Ct,

(3)

where Xt ∈ Rn×di represents the invocation sequences
of all included knowledge services nodes, e.g., all colored
nodes in Figure 2 at time t; Ht represents the output
of the E-GCGRU at time t; similarly to the structure of
GRUs, rt, ut and Ct represent the output of the reset and
update gates, and the temporary states of the unit at time t,
respectively; fr , fu, and fC contain graph convolutional
filters with different trainable parameters; and particularly,
Gt represents the knowledge service network at time t. Note
that in this paper, we only consider the usage observations
of knowledge services are with a single dimension, i.e.,
di = 1. Furthermore, for some particular cases with more
meaningful observations, like Quora counting both like and
collection of knowledge services, we can easily extend the
model with larger di.

One major difference between our E-GCGRUs and reg-
ular GRUs is that, the multiplications in GRUs are replaced
by the graph convolutional operators described in previous
sections. Such a change implies that E-GCGRUs can not
only capture the temporal dependencies from past records
of one sequence, but also consider the observations of one’s
neighbors. Besides, compared with DCGRUs, the dynamic
perception in our E-GCGRUs further promotes the flexibil-
ity of learning dependencies from changing structure.

3.4 Predict Trend of Time Series

After obtaining the temporal features Ht, we train a fully
connected layer (FC in Figure 2) to make final predictions,
which is shown in Equation (4):

Ŷ t+1 = W⊤Ht + b, (4)

where H represents the hidden states from E-GCGRUs
that contains spatiotemporal features; Y represents the pre-
dicted values; W and b represent the learnable parameters
of the fully connected layer.

Finally, E-GCRNNs iteratively treat the predictions at
time t as the observation inputs of the E-GCGRU at time t+1
(namely the dashed line shown in Figure 2), and thus multi-
step usage tendency of knowledge services can be predicted
in an auto-regressive manner.

4 PARAMETER LEARNING

In this section, we discuss parameter tuning and optimiza-
tion.

4.1 Loss Function

To seek the optimal parameters, we use the following loss
function:

L =
1

n

∑
i,t

∣∣yt+1
i − ŷt+1

i

∣∣ , (5)

where n represents the number of samples in a batch; ŷti
and yti represent the prediction results of E-GCRNNs and
the ground truth, respectively. Since the order of magnitude
of popular and long-tailed knowledge services differ signif-
icantly from each other, we use logarithmic transformation
in practice to alleviate the bias and obtain the residual in a
relative meaning.

4.2 Localized Mini-Batch Training Scheme

Not only the first-order neighbors, but also any (infinite
steps) reachable ones are informative. Thus, one important
problem is which vertices should be included as inputs. As
analyzed in Section 3.1, the approximation formula of graph
convolution, i.e., Equation (1), is truncated by K , which
implies that only K-step reachable neighbors could be valid
for the center vertices of interest. Therefore, we can divide
all reachable knowledge services into multiple batches for
training, which inspires our localized mini-batch training
scheme (Algorithm 2). Taking Figure 4 as an example, there
are two major rounds of localized sampling:
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Algorithm 2 Localized mini-batch training algorithm

Input. Interaction graph: Gt.
Initialization. Hierarchy number: M ; Maximum number of
central nodes: nm; Predefined batch size: nm

bs .
Output. Localized mini-batch: G̃t.

1: Maintain a dictionary D for each nodes, where the key
is node ID, and the value is their neighbors within K-
order.

2: Sort the keys into several hierarchies H = hm based on
their size.

3: while H ̸= ∅ do
4: m← randint(M).
5: if hm ̸= ∅ then
6: N ← Randomly sample nm nodes. ▷ 1st round
7: N ← ∪{D(n), n ∈ N}.
8: if |G̃t| < nm

bs then
9: N ← Sample nm

bs − |G̃t| nodes. ▷ 2nd round
10: end if
11: G̃t ← construct graph(N ).
12: return G̃t.
13: else
14: Remove hm from H.
15: end if
16: end while

• 1st round. In each training or inference procedure,
we first randomly pick up several nodes (e.g., nodes
#1 and #5) and sample their neighbors within K-
order (e.g., all nodes in green) into a subgraph G̃t. As
for the inference procedure, we predict the trend of
the central nodes, so only one round is required.

• 2nd round. For training, in order to make full use of
computational resources, we casually sample other
nodes from the rest (e.g., nodes in purple) to fulfill a
predefined batch size (e.g., nbs = 16) in this round.
After sampling, if there exists a link between two
nodes, we also connect them in the new graph G̃t.
Note that, during training, the trend of all sampled
nodes is predicted and used for updating model
parameters.

Recalling the small world trait of the knowledge ser-
vice network, this algorithm simultaneously considers the
popular and long-tailed services. For the popular services,
Algorithm 2 limits the number of neighbors step by step. For
the long-tailed services, Algorithm 2 complements causal
neighbors for training, which also contributes to the data
augmentation. Besides, by dividing the services into several
hierarchies according to their popularity and iteratively
updating the model parameters, the model could be less
sensitive to the size of neighbors.

5 EXPERIMENTS

We have conducted extensive experiments to evaluate the
effectiveness and efficiency of our proposed E-GCRNNs. In
this section, we first introduce our experimental settings,
and then analyze in detail our experimental results. Code
and data are available at https://www.simflow.net/Team/
linhaozhe/E-GCRNNs.zip

1

k=1

k=2

5

k=1

k=2

Fig. 4: Diagram of the localized mini-batch training scheme.
All colored vertices and edges are sampled, and a new
subgraph G̃ is constructed, where the green are sampled in
the 1st round, and the purple are sampled in the 2nd round.

5.1 Experimental Settings

5.1.1 Dataset Selection
As mentioned in Section 1, Wikipedia is a representative
product of knowledge services, and has been widely studied
in public competition10 and literature [11], [12]. Therefore,
we adopt it as our experimental dataset to test and verify
our E-GCRNNs. The page views of Wikipedia entries were
originated from WikiStat11, which hourly records the usage
counts for thousands of entries from English, German, and
other wiki-projects since 2013. To study the interactions
among these knowledge services, we crawled the hyperlinks
among these entries to construct the knowledge service
network.

This real-world dataset perfectly fits our problem in the
following three aspects. Firstly, for the temporal depen-
dencies, different page views apparently present different
and complicated temporal characteristics. Secondly, for the
spatial dependencies, the Wikipedia entries interact with
each other. Besides, since the content of Wikipedia entries
is frequently altered, the corresponding intensities of the
spatial dependencies are different and evolutionary. Thirdly,
the network structure of Wikipedia entries presents small
world trait. As shown in Figure 5, when we consider 10-
step reachable neighbors, i.e., the purple histogram, most of
the vertices are connected, while others are isolated. Based
on these similarities in all three aspects, we believe it is
reasonable to use the WikiStat dataset to test and verify our
model.

Since different wiki-projects present gigantic distinc-
tions [13], without losing generality, we selected English
and German wiki-projects to simulate the service invocation
data. In our experiments, we randomly sampled 4, 118 and
4, 321 entries from English and German Wikipedia projects,
and crawled the hyperlinks among these entries to con-
struct the service dependency graphs, respectively. For both

10. https://www.kaggle.com/c/web-traffic-time-series-forecasting
11. https://dumps.wikimedia.org

https://www.simflow.net/Team/linhaozhe/E-GCRNNs.zip
https://www.simflow.net/Team/linhaozhe/E-GCRNNs.zip
https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://dumps.wikimedia.org


JOURNAL OF IEEE TRANSACTIONS ON SERVICE COMPUTING, JUNE 2021 7

number of reachable neighbors

n
u

m
b

er
 o

f 
v

er
ti

cc
es

Fig. 5: Histogram of Wiki-EN dataset. Within total 4,118
knowledge services, the red, yellow, green and purple ones
represent the histogram of 1, 2, 3 and 10-step reachable
neighbors, respectively.

TABLE 1: Numerical properties of datasets

Datasets Entries Links Samples

Wiki-EN 4, 118 11, 198 3, 265, 574
Wiki-DE 4, 321 8, 173 3, 426, 553

datasets, we used page views from July 1, 2015, to June
30, 2017, for training and validating the models, and those
from July 1, 2017, to August 31, 2017, for testing. Table 1
shows the details of the datasets, where samples refer to the
number of invocation records for different nodes at different
timestamps.

5.1.2 Evaluation Schemes
In our study, due to the huge difference in the order of mag-
nitude of different service invocations or Wikipedia page
views, absolute indicators, like Mean Absolute Error (MAE)
and Mean Square Error (MSE), cannot appropriately reflect
the prediction residual. For example, imagine there are ten
sequences, one is with a thousand scale, while the others are
with decadal scale. When the one with a thousand scale is
predicted inaccurately, no matter how precisely the others
are predicted, a model will be deemed a bad one, if MSE
or MAE is used for evaluation. Therefore, in this study,
we introduce two indicators to evaluate the performance
of our model, being the Root Mean Squared Logarithmic
Error (RMSLE) [18] and the Symmetric Mean Absolute
Percentage Error (SMAPE) [19].

The first indicator RMSLE evaluates the model by
shrinking the prediction result to a logarithmic scale, which
alleviates the impact caused by order of magnitude. RMSLE
can be formulated by Equation (6), and a lower RMSLE
represents a higher prediction accuracy.

RMSLE =

√√√√ 1

n

∑
i,t

[log(yti + 1)− log(ŷti + 1)]
2
. (6)

The second indicator SMAPE reflects a relative residual
of prediction results, which can also solve the problem of
the order of magnitude. Besides, an under-forecasting pre-
diction gets a higher value than an over-forecasting one. It is
quite suitable for our problem, because a slight redundancy

is essential for any kind of role in the service ecosystem,
as explained in earlier sections. SMAPE can be formulated
by Equation (7), and a lower SMAPE represents a higher
prediction accuracy.

SMAPE =
1

n

∑
i,t

|ŷti − yti |
(ŷti + yti)/2

. (7)

5.1.3 Baselines

We compared our E-GCRNN with five representative base-
lines, which are described as follows.

• ARIMA [14]. AutoRegressive Integrated Moving Av-
erage (ARIMA) is the most classical time series pre-
diction model, which has been widely used in many
industries. ARIMA can easily capture the linearity
of one time series. We implemented this method
through the statsmodel python package12.

• VAR [15]. Vector AutoRegressive (VAR) model is an
extension of the ARIMA model, which further takes
the interaction among sequences into consideration.
In the experiments, we set one sequence with all its
one-order neighbors as a group, and trained different
VAR models for each individual sequence.

• SVR [16]. Support Vector Regression (SVR) can
model the nonlinearity of time series by utilizing dif-
ferent kernels. We implemented this method through
the sklearn python package13.

• FC-GRU [17]. Recurrent neural networks (RNNs)
have been widely used for sequence generating due
to their great capability of learning the long-time
dependencies of sequences through vast records. In
this paper, we replaced the LSTMs with GRUs to
keep consistent with the module setup of DCRNNs
and our E-GCRNNs, and name it Fully Connected
Gated Neural Units (FC-GRUs).

• DCRNNs [8]. Diffusion Convolutional Recurrent
Neural Networks (DCRNNs) is the state-of-the-art
model for spatiotemporal prediction, which exploits
graph convolutional filters to learn the interaction
among sequences, utilizes the GRUs to capture the
temporal dependencies, and then makes predictions.

Among these baseline models, ARIMA and SVR make
predictions individually; VAR considers the interactions
among sequences; FC-GRUs and DCRNNs are RNN-based
models, which can learn general features from the whole
collection of sequences; and DCRNNs exploits the interac-
tions among sequences and is state of the art in this field.

5.1.4 Hyper-parameters and other settings

All of our experiments were conducted on an Ubuntu
server [CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz,
GPU: NVIDIA GTX 1080 Ti]. To make the comparison fair,
we apply regular procedures in validating sets, including
grid search, early-stopping, and control variates, for hyper-
parameters selections. In particular, we have tried different
numbers of RNN hidden states in [128, 256], and initial

12. https://www.statsmodels.org
13. https://pypi.org/project/scikit-learn

https://www.statsmodels.org
https://pypi.org/project/scikit-learn
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TABLE 2: SMAPE and RMSLE of different approaches in page views prediction of English and German Wikipedia.

Model
Wiki-EN Wiki-DE

SMAPE RMSLE SMAPE RMSLE

ARIMA [14] 60.3986± 0.0000 1.0147± 0.0000 69.8497± 0.0000 1.1893± 0.0000
VAR [15] 64.5642± 0.0000 1.2483± 0.0000 69.4245± 0.0000 1.1160± 0.0000
SVR [16] 41.2042± 0.0000 0.7334± 0.0000 41.9852± 0.0000 0.7163± 0.0000
FC-GRU [17] 32.6536± 0.5627 0.5477± 0.0229 36.1476± 0.7813 0.6132± 0.0077
DCRNNs [8] 30.4030± 0.8642 0.5298± 0.0028 35.6445± 0.8306 0.6030± 0.0063

GCRNNs 30.3667± 0.9487 0.5288± 0.0049 35.5654± 1.19861 0.6048± 0.0079
E-GCRNNs 29.9606± 0.4559 0.5225± 0.0041 34.7936± 0.2047 0.5978± 0.0023

learning rate in [10−2,10−3, 10−4]. We utilized Adam opti-
mizer for all NN-based models and applied early-stopping
to control the convergence conditions. Overall, all the hyper-
parameters were tuned for different models to achieve
their best performance. As for the most sensitive hyper-
parameters for the GCN-based models, i.e., the predefined
graph convolution order K , we will discuss in detail in
Section 5.2.3.

5.2 Experiment Results
5.2.1 Main Results
To compare the overall prediction accuracy of our E-
GCRNNs with those of baseline models, we conducted
repeated experiments ten times with different initializations.
Table 2 records the average and standard deviation of
SMAPE and RMSLE from different methods in two-month
(i.e., 62 days) prediction. Specifically, GCRNNs refer to a
degradation of our E-GCRNN, which considers the cor-
relations among knowledge services are static. Examining
the results over both datasets, we noticed five consistent
phenomena. First, all RNN-based models, including our
E-GCRNNs, significantly outperform the previous ones,
which should result from the GRUs efficiently capturing
long-term dependencies of sequences. Second, by compar-
ing the accuracy of ARIMA and VAR, we observed that
although VAR models the correlations among time series, its
errors were not less than those of ARIMA. This phenomenon
indicates that simple matrix operations in VAR are not
sufficient to learn intricate relationships among knowledge
services. Third, three methods (DCRNNs, GCRNNs, and
E-GCRNNs), adopting graph convolutional operators to
exploit the spatial dependencies, gain significant strides,
demonstrating that spectral graph convolution operator is
effective for modeling complicated services relationships.
Fourth, by comparing the results between DCRNNs and
GCRNNs, it seems that the encoder-decoder structure does
not contribute to the improvement, since GCRNNs are
slightly outperformed. Finally, our E-GCRNNs, learning the
changes of the interactions among sequences, performs the
best against the baselines. In the datasets, our E-GCRNNs
gain around 1.1 ∼ 1.3% with a low standard deviation
under both metrics.

5.2.2 Long-term predictions
The accuracy of long-term prediction is an important prop-
erty of the models. Therefore, we report the prediction errors
changing with increasing prediction lengths in Figure 6.

Among these methods, FC-GRUs is the fundamental model
only applying a gated mechanism to learn temporal de-
pendencies, while the other three models utilize spectral
graph convolution to fuse spatial information with temporal
ones. The only difference between DCRNNs and GCRNNs
is whether to use an encoder-decoder structure or not. Fur-
thermore, our E-GCRNNs are the only model considering
the evolution of spatial dependencies.

Figure 6 elaborates the performance of all approaches
with different ranges of prediction time. Longitudinally, in
the beginning, all the models achieve a better prediction
accuracy compared to themselves, as the trends in a short
time depend more on short-term dependency and thus are
easier to be predicted. Among these models, FC-GRUs,
being not able to utilize the spatial dependencies among
sequences, performs worse than the other three models;
while the other three models, i.e., DCRNNs, GCRNNs, and
E-GCRNNs, perform similarly at the beginning. Gradually,
with the prediction horizon of interest becoming longer,
the SMAPE and RMSLE of all the models increase, with
DCRNNs and GCRNNs being very similar, demonstrating
the encoder-decoder structure is not essential. However,
our E-GCRNNs turn increasingly smaller than those of
DCRNNs and GCRNNs. Such an observation indicates that
our dynamic perception module considering the evolution
of the correlations brings improvements for long-term pre-
diction.

5.2.3 Impact of Predefined Order
We noticed that the prediction accuracy of our E-GCRNNs
is significantly influenced by the predefined order K , which
determines the receptive field of graph convolutional filters.
Therefore, we carefully studied the impact of K , and re-
ported the results in Figure 7. When K = 0, E-GCRNNs
degrades to FC-GRUs, which only utilize the records of
one sequence itself to make a prediction, and thus presents
the lowest prediction accuracy among these methods. When
K = 1, the SMAPE and RMSLE in both the training set and
the testing set descend greatly, demonstrating the efficacy
of our E-GCGRU. However, with growing K , the SMAPE
of the training set goes down, while that of the testing
set rebounds. In our experiments, we found that K = 1
and K = 2 are the best hyper-parameters for the English
and German datasets, respectively. Consistently, through
our experimental results, we found that our E-GCRNNs
easily overfit with a large K . Thus, developing an advanced
regularization technique for our model will be an important
future work.
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Fig. 6: SMAPE and RMSLE of different models with growing prediction length.

5.2.4 Training Efficiency

We also studied the efficiency and utility of the proposed lo-
calized mini-batch training scheme for a static and dynamic
setup, and reported the average training time per batch
and parameter numbers in Table 3. Focusing on fixed batch
size (512 or 1024), our E-GCRNNs are slightly more time-
consuming than the DCRNNs and GCRNNs, when they
show a similar performance. The extra cost of the E-GCRNN
is the result of its dynamic perception module frequently
updating the correlations. However, as shown in Table 2
and Figure 6, the dynamic perception module significantly
increases prediction accuracy. Thus, we deem such slightly
extra time cost acceptable. Additionally, it is noticeable that
the amount of model parameters of the DCRNNs is almost
twice those of the GCRNN and E-GCRNNs, due to the
encoder-decoder structure. While in this case, we found that
our E-GCRNNs, which lack an encoder-decoder structure,
can provide comparable performance in terms of prediction
accuracy with fewer parameters.

TABLE 3: Time cost and model size of different models.

Model Time (Sec./Batch) # parameters
nbs = 512 nbs = 1024

DCRNNs 1.663 1.691 201, 345

GCRNNs 1.658 1.694
100, 737E-GCRNNs 1.859 2.113

5.2.5 Case Studies

After observing the prediction results of many cases, we
noticed some interesting traits of our E-GCRNNs. In this
section, we select three of the most representative ones to
vividly present these features.

Case 1. Figure 8 (a) shows the ground truth and pre-
diction results of Wikipedia entry Olivia Munn, which has
two neighbors in our dataset. Based on the knowledge that
actress Olivia Munn played a popular role Psylocke in the
movie X-Men: Apocalypse, it is easy to identify a strong
connection between the page views of the entry Olivia Munn
with those of its neighbors. For this typical case, the SMAPE
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Fig. 7: SMAPE and RMSLE changes with different prede-
fined order K .

of the FC-GRU, DCRNN, GCRNN and our E-GCRNN is
32.1421, 26.9466, 26.2038, 25.5751, respectively, where the
performance of all the GCN-based models are better than
that of the FC-GRU. After observing many cases like this
one, we believe the graph convolution filters can utilize the
historical records of the neighbors to improve the prediction
accuracy of the central nodes.

Case 2. Figure 8 (b) shows the ground truth and pre-
diction results of Wikipedia entry The OA, which also has
two neighbors in our dataset but the correlation between
these three entries evolve largely with time. The SMAPE of
the FC-GRU, DCRNNs, GCRNNs and our E-GCRNNs are
56.5899, 96.5173, 65.5465, 15.7331, respectively. From cases
like Figure 8 (b), we can conclude that the performance of
GCN-based models greatly relies on the graph. More specif-
ically, with the outdated correlation between sequences,
DCRNNs and GCRNNs, two GCN-based models, perform
even worse than the simple FC-GRU model, while our E-
GCRNN model perceiving the dynamic correlation among
sequences can better utilize the graph and make remarkably
more accurate predictions than other models.

Case 3. Figure 8 (c) shows the ground truth and pre-
diction results of the Wikipedia entry Avengers: Infinity War,
which has 18 neighbors in our dataset. In this typical case,
the SMAPE of the FC-GRU, DCRNNs, GCRNNs and our E-
GCRNNs are 34.299, 84.7189, 100.8242, 52.5599, respectively.

From this case, we suspect that for a popular node, i.e., a
node with many neighbors, the GCN-based models may be
more likely to be misled by its not-so-important neighbors.
Here, we see the entry Avengers: Infinity War once shows a
strong correlation with all the plotted neighbors. However,
when we attached attention to the tendency of the page
views at the end of the training set, we found the tendency
of entries Avengers: Infinity War, Marvel Cinematic Universe,
Chris Hemsworth present ascending trends, while those of
the entries Zoe Saldana, Thanos present descending trends.
Therefore, for such popular nodes, the ability of the GCN-
based model to identify the noisy neighbors and utilize the
important ones to make predictions requires careful study
in the future.

In summary, as illustrated in the above cases, the GCN-
based models are able to utilize the (virtual) spatial de-
pendencies and capture the temporal dependencies among
sequences. In particular, our E-GCRNN performs the best
in the evolving sequences due to its ability to adapt to the
changing correlation among sequences dynamically. How-
ever, the GCN-based models also show a limitation in the
overfitting problem, which will be one of our important
future works.

6 RELATED WORK

In this section, we compare our work with related work
in the literature from three aspects: service networks, time
series prediction, and spectral-based graph convolutional
networks.

6.1 Service Networks

In recent years, with the development of cloud computing,
big data, and the Internet of Things, Service-Oriented Ar-
chitecture (SOA) has been widely accepted as a mainstream
paradigm in the domain of software engineering [20], [21],
[22], [23]. As a consequence, a great amount of services,
especially knowledge services, have been developed and
published into the service ecosystems, which subsequently
construct intricate service networks [24], [25], [26], [27], [28].

In such contexts, networked services have posed many
new challenges in the traditional services computing
paradigm. For example, in terms of service recommenda-
tion, traditionally, people mainly counted on the functional
descriptions of services, namely Web Service Description
Language (WSDL), to make recommendations through a
keyword search or topic modeling [29], [30], [31], [32], while
ignoring the interactions among services. In recent years,
non-negative matrix decomposition and neural network-
based models are developed to exploit the collaborative
relationships among services [33], but these methods all face
the problem of cold start. Some recent works try to utilize
service networks to make recommendations and gain extra
improvement in recommendation accuracy [34], [35]. How-
ever, such work, including service recommendation and
service tendency prediction, can only learn general patterns
of service invocation, which are not able to directly make
use of the relationships among services [11]. By comparison,
our work applies graph convolution to capture the evolving
interactions among services in service networks, which can
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(a) Olivia Munn

(b) The OA

(c) Avengeres: Infinity War

Fig. 8: Typical cases. Each figure represents page views of one Wikipedia entry, with dash lines before the gray dash line
(July 1, 2017) representing the ground truth and the others after the dash line representing the prediction results of different
models. Specifically, the blue dash line represents the ground truth of the central entry, the purple one, orange one, pink
one, and green one represent the prediction results of the FC-GRU, DCRNN, GCRNN and E-GCRNN, respectively, and the
others represent the true page views of the neighbors of the central entry.
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become a strider to improve the prediction accuracy of
trends of service invocation.

6.2 Time Series Prediction

The prediction of time series has been an enduring problem
for decades. In the beginning, researchers focused on pre-
dicting an individual time series. For example, the autore-
gressive integrated moving average (ARIMA) and support
vector regression (SVR) [16] was proposed to model the
linearity and non-linearity of one sequence. Similarly, the
point process model is also a classical model for modeling
individual sequences. In particular, related to our work,
Xiao et al. and Liu et al. use it to successfully predict
the usage tendency of knowledge service (paper/patent
citation counts) [3], [4]. After that, people were also in-
terested in constructing the relationships among multiple
sequences. Representative examples are the vector autore-
gressive model (VAR) [15] and multiple-output SVR [36].

In recent years, using recurrent neural networks (RNNs),
a number of models have been developed to predict large-
scale time series [37], [38]. They substantially improve pre-
vious work, due to their ability to capture long-term depen-
dencies of RNNs, especially because of their unique units
— Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU). As an example related to our work, Wen et al.
applies RNNs to predict the citation counts [39]. However,
traditional RNNs can only learn general changing patterns
from a broad range of sequences. As a result, the connections
among sequences are not well exploited. Therefore, based on
RNNs, people have started to study how to utilize the inter-
actions among large-scale time series to improve prediction
accuracy. Among the trails, Goel et al. combined VAR with
RNN [40], and Lai et al. used 2D convolutional filters to
extract the relations among sequences [41]. However, these
models, either based on matrix decomposition or fixed-size
convolutional filters, only work when the number of related
time series is small.

Recently, with the development of graph neural net-
works, Li et al. proposed diffusion convolutional recurrent
neural networks (DCRNNs), which introduces a spectral-
based graph convolutional filter to model the spatial de-
pendencies among roads, to predict the sequential traffic
stream [8]. The main differences between our E-GCRNN
and DCRNNs are two aspects. Firstly, we use a plain RNN
structure (shown in Fig. 2) instead of an encoder-decoder
one in DCRNNs to reduce model parameters, as well as
to remain model performance. Secondly, DCRNNs assume
that the interactions among sequences are time-invariant,
which is unsatisfactory in our problem domain, namely
evolutionary service invocation tendency. In contrast, we
consider the evolution of the interactions among time series
in this work, which has been proved effective in remarkably
improving prediction accuracy in our targeted knowledge
services domain.

We realize that software service usage tendency predic-
tion [11], [30], [33] may also imply some similar charac-
teristics as knowledge service usage tendency prediction.
However, compared with the software services ecosystem,
the knowledge services ecosystem represents a much larger-
scale network with many more nodes and much more

complex relationships. This is good for establishing deep
learning models, and our findings on knowledge services
may be applied to software services, which will be our
future work.

6.3 Spectral-based Graph Convolutional Networks

Graph convolutional networks (GCNs) have shown the
potential to aggregate information from networks with
complicated and irregular structures to utilize the inter-
actions among sequences. The GCNs were first proposed
in [5], where spectral-based GCNs, due to their interpretable
physical property [42], have drawn significant attention.
However, it carries some practical issues.

On the one hand, the graph convolutional operator is
time-consuming. To reduce the complexity, Defferrard et
al. combined Chebyshev expansion [43] with graph signal
theory [44] to calculate the graph convolution in a recursive
manner [6]. Kipf et al. proposed to stack graph convolutional
layers to reduce model parameters [7]. These methods are a
great basis for our research. However, their ideas consider
the Laplacian matrix is static, which cannot solve our prob-
lem under the evolutionary assumption.

On the other hand, the application of graph convo-
lutional operators shows a memory bottleneck. In many
previous works, GCNs are trained on all training and testing
nodes simultaneously, which is impractical in many real-
world industries comprising thousands of nodes. Recently,
Hamilton et al. and Chen et al. proposed GraphSAGE and
FastGCN to sample related nodes into a mini-batch, to
improve efficiency [45], [46]. However, those models only
utilize the sampled central nodes to train models, with their
neighbors as features for the central nodes, which cannot
fully make use of the computational resources. To solve
the remained problem, our localized mini-batch training
scheme can not only reduce the complexity by separating
large graphs into multiple small ones, but also make full
use of the GPU memories by considering all included neigh-
bors as the central nodes. Besides, we apply two rounds
of sampling in our localized mini-batch training scheme,
which fits well for our problem that presents a small world
trait. Furthermore, we have proved that our scheme can
efficiently reduce the computational complexity as well as
be beneficial for model regularization.

7 CONCLUSIONS

In recent years, knowledge services have become one of
the most important forms for supporting Internet-based
innovations. As increasingly more knowledge services are
published onto the Internet, how to accurately predict the
usage tendency of knowledge services has become a signif-
icant topic. However, three unique facts make this problem
intractable, including (i) different and complicated tem-
poral dependencies, (ii) intricate and evolutionary spatial
dependencies, and (iii) small world trait. To tackle such
issues, we have presented evolutionary graph convolutional
recurrent neural networks (E-GCRNNs) to predict the long
trend of large-scale service invocation with dynamic inter-
actions. E-GCRNNs count on their E-GCGRU component to
aggregate spatial information, perceive changing patterns,
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and learn temporal dependencies. Furthermore, E-GCRNNs
rely on a localized mini-batch training scheme to improve
the efficiency and utility of computational resources sig-
nificantly. Extensive experimental results over real-world
datasets have demonstrated that E-GCRNNs outperform
baselines, especially when the prediction period becomes
longer.

In our future work, we plan to focus on the following
four aspects: (i) to study the sensitivity of E-GCRNNs and
further improve their prediction accuracy; (ii) to figure out
the physical meaning of complex eigenvalues and take cau-
sation of sequences into consideration, so that the directed
invocation relationship among mashups could be modeled;
(iii) to solve the overfitting issue of E-GCRNNs and develop
an advanced regularization technique; and (iv) to study
the applicability of our E-GCRNNs on predicting the usage
tendency of software services.
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