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Abstract— With the rapid development of the Internet of
Things technology, the concept of smart cities that aims to
help residents improve their quality of life has raised much
attention in several application areas. In the context of smart
cities, the provision of point of interest (POI) recommendations
become an important requirement because a wide range of
POIs are available for urban dwellers. Location-based social
networks (LBSNs) such as Foursquare and Gowalla provide a
massive volume of user check-in records that can assist users
in choosing new POIs. However, user trajectories are mostly
sparse in the real world. For example, users only check in a few
POIs, and this makes it difficult to provide recommendations
based on limited history trajectories. Though some attempts
have adopted auxiliary geographical information to enhance POI
recommendation, they still encounter the following problems:
1) the geographical trajectories of users are usually sparse in real-
world datasets; 2) users may be more interested in the remote
POIs; and 3) the previous models inherently perform transductive
learning that cannot handle well the recommendation of unseen
users and POIls. To address these problems, we propose an
inductive representation learning model (IRLM) for location
recommendation. IRLM contains two parts, namely geographic
feature extraction and inductive representation learning. IRLM
first captures global geographical influences among POIs through
a standard Gaussian mixture model (GMM). Then IRLM adopts
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an attention neural network for the recommendation. Experimen-
tal results indicate that our proposed model can achieve superior
performance over state-of-the-art models.

Index Terms—Inductive representation learning, location-
based social network (LSBN), POI recommendation, smart cities.

I. INTRODUCTION

MART city is a concept that has gained a lot of attention

in recent years as it aspires to improve citizen quality of
life [1]. With the fast-growing Internet of Things technology,
it is more convenient for people to share their personal infor-
mation. The location-based social network (LBSN) services
of sharing check-in records, such as Foursquare and Yelp,
are emerging and become increasingly popular in the real
world [2]. The massive volume of daily generated data is
valuable for researchers to extract users’ mobility patterns and
provide personalized recommendation services. In LBSN, the
point of interest (POI) recommendation is one of the most
important applications [3], [4], [5], [6], which can assist users
to explore potential interesting places and show its value in
decision making of business areas.

The previous recommender algorithms are often designed
under the assumption that users’ check-in records present
their preference ratings of POIs. For example, Ye ef al. [7]
adopt a friend-based collaborative filtering method to calculate
the user’s ranking of new POIs, and Wang et al. [6] utilize
a matrix completion approach to incorporate geographical
features with user-POI affinity information. However, most
of the existing POI recommendation models, including [5],
[6], [7], are inherently performing transductive learning which
requires all users and POIs should be shown up in the training
process. Thus, it is hard for those models to make effective
recommendations for unseen users and POIs. Applied to the
recommendation community, this challenge is also known as
the cold-start problem, and work has been done on estimating
the interests of new users based on factors like geographical
influences. Specifically, they follow a common assumption
that users prefer to visit nearby POIs than ones with far
distance [8]. For instance, Ye ef al. [9] model the relationship
between users and POIs with a power-law distribution and
Wang et al. [10] make a more comprehensive comparison
among techniques of using exponential, power-law, and hyper-
bolic functions. Nevertheless, all these approaches assume that
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the influences of POIs on users follow certain distributions,
which would encounter the following problems: 1) the users’
trajectories are usually sparse in the real world, thus it is
difficult to estimate the influence distributions of POIs; 2)
users may be more interested in some remote POIs, which
is against the assumption mentioned before; and 3) more
importantly, when new users and POIs are emerging, these
models inherently perform transductive learning that cannot
deal with the unseen ones not being trained before.

To solve the problems outlined above, we propose an
inductive representation learning model (IRLM) for person-
alized location recommendations. Specifically, IRLM consists
of two parts, geographic feature extracting with a standard
Gaussian mixture model (GMM) and inductive representation
learning for the recommendation. GMM is widely used for
representing normally distributed clusters within an overall
data distribution. The advantage of the mixture model is
that they do not require which cluster a data point belongs.
It allows the model to learn the probability distribution of
clusters automatically [11]. As such, we adopt it as the
first part that aims to capture the geographical influences
among POIs in a global context, then utilize these influences
as additional features for the recommendation. The second
part is an inductive learning model that is based on graph
convolutional neural networks (GCNs) to learn the function of
aggregating the neighbor information (local context) of both
users and POIs from an attention convolutional perspective.
Before performing the graph learning, since a single user
may only contain sparse historical trajectories, we employ a
graph reconstruction method that can build edges between
users and POIs with random walks [12]. More concretely,
we can obtain the edges of user-user, user-POI, and POI-POI
with a sliding window and reconstruct a more dense graph
to alleviate the mentioned sparsity problem. In this way, our
method can learn personalized trajectory recommendations
beyond the geographical information and be aware of the
interest of remote POIs with information propagation from
multihop neighbors. Besides, IRLM enables fuse these two
parts to perform representation learning that can efficiently
generate embeddings for the unseen users and POIs to benefit
cold-star POI recommendation. In a conclusion, this article
provides the following contributions.

1) We propose an IRLM for POI recommendation, which
jointly makes use of both the global and local contexts of
user and POI information. To the best of our knowledge,
this is the first attempt to investigate how to effectively
generate embeddings for unseen users and POIs to
benefit the recommendation.

2) We first employ the standard GMM to capture the global
geographical influences among POIs. Then, we employ
a graph reconstruction method and adopt an attention
neural network to learn the function of aggregating the
neighbor information of users and POIs. By doing so,
we can effectively alleviate the sparse problem of user
trajectories and extend the recommended POI scope
to include the remote ones. More importantly, we can
generate embeddings for the unseen users and POIs with
the learned aggregation function.
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3) We compare the performance of the proposed IRLM
with several baselines of POI recommendations on two
real-world datasets of LBSN to demonstrate its effec-
tiveness. The results of experiments show that IRLM
achieves better performance in subsequent tasks at dif-

ferent training scales.

The source code and data will be available after acceptance.'

The remainder of the article is arranged as follows. Section II
gives the introduction of the proposed model. Experimental
analyses are presented in Section III. Section IV reviews the
related work and Section V summarizes this work.

II. PROPOSED IRLM MODEL

We provide the formulation and notations of the problem
in this section. Following that, we will present an overview of
the proposed IRLM framework and describe its components
in detail.

A. Problem Formulation and Notations

In POI recommendation tasks, we present the user check-in
data as a graph network G = (U, P, F, E), where U denotes
a set of users, P represents a set of POIs, F' is the associated
features of POIs, and E C U x P denotes the set of edges
generated based on user check-in behaviors. In this article,
we aim to learn a low-dimensional embeddings W e R?
for each user and POI, where d « |U| and d < |P|.
Users and POIs, where similar users and POIs are assigned
to nearby areas, are described in the low-dimensional space
that preserves the relations between them, thereby making the
learned representation helpful for the next-to-follow graphi-
cal applications, such as POI recommendation [6] and data
visualization [13].

B. Overview of IRLM

As the previous studies [9], [10] showed, there are geo-
graphical relationships among users and POIs that can be
employed to benefit the performance of POI recommendation.
Without loss of generality, our proposed IRLM contains two
parts: 1) geospatial features are extracted via GMMs to lever-
age their geographic influence and 2) a graph attention convo-
lutional neural network for inductive representation learning.
The whole framework of the proposed model is shown in
Fig. 1. The following details will be provided regarding the
training components.

C. Step 1: Geographic Feature Extraction

As shown in the top part of Fig. 1, to begin with, we first
perform the GMM model [11] to extract the geographic fea-
tures of user check-in data. Specifically, each POI is denoted
as a tuple of latitude and longitude. After conducting an
unsupervised clustering method with GMM, we can gain
the geographic influences of POIs using Gaussian mixture
distributions. Then we can utilize a vector [x, X2, ..., X|x|] to
present the feature of a user or POI, where K denotes the set of

Uhttps://github.com/junyachen/IRLM
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Overview of the proposed IRLM model. The leftmost figure presents the user check-in data. The top part of the right figure denotes that we exploit

the GMM model to extract the geographic features of user check-in data. And the bottom half figure denotes the graph reconstruction and the inductive

representation learning. The detailed description can be found in Section II.

clusters and x; represents the probability belonging to cluster
k. Note that since a user may visit multiple POIs, we simply
average its vectors to aggregate the feature information. The
obtained features can be formulated as follows:
K
X~ p(x) = w - NCxlp, Zi) (1)
k=1

where y; and X; denote the mean and covariance values of
cluster k, respectively, wy represents the learning weight, and x
denotes the latitude and longitude information of geographical
position.

D. Step 2: Graph Reconstruction

As shown in the bottom part of Fig. 1, we present all
users and POIs as vertices and build edges between them.
Then, we conduct the random walk [12] to construct a user
check-in graph. Specifically, we first obtain a set of walk
sequences starting from each user. Next, we can gain the
edges of user-user, user-POI, and POI-POI with a sliding
window and reconstruct a more dense graph. Compared with
the original edges only containing user-POI check-in infor-
mation, our proposed graph reconstruction method consider
more types of relations between users and POIs which can
benefit the following aspects: 1) alleviating the sparse user
trajectories and 2) explicitly modeling the long-distance influ-
ence propagated by the initial check-in relations. Finally,
we perform inductive representation learning with the fea-
tures extracted from Step 1, and the graph reconstructed
from Step 2.

E. Step 3: Inductive Representation Learning

To perform inductive representation learning effectively, the
designed model must allow embedded representations to be
generated efficiently for the unseen vertices, such as users
and POIs. However, most of the existing POI recommenda-
tion models are inherently perform transductive learning that
requires all users and POIs being shown up in the training
process. Inspired by the recent upstarts of GCN [14] and its
variants [15], [16] which have shown promising performance
in graph mining areas, we adopt an attention aggregator for
representation learning. The detail is defined by

vi=0o z Gy, - WV 2)
v;eN,,

where v € R? denotes the hidden embedding with dimension
d, o is the LeakyReLU function [16], / is the number of
layers, N'(v;) denotes the neighbors of vertex v;, W/ e R¥*¢
is a shared weight matrix at layer /, and a,,,, denotes a
weight coefficient between vertex v; and v; (the details will
be introduced in the followings). Then, the representation of
node vll- is obtained by aggregating the messages passing from
its neighbors at layer [ — 1 with the weight coefficients, which
is defined by

exn (oo - (W )
N 3)
2N, eXP(U (al - [Wl_lvﬁ_l ”Wl—lvi—l]))

oio;
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where W/=! € R¥*¢ is a shared weight matrix at layer [ — 1,
and a € R* denotes a weight vector for the concatenation
operation ||. Note that in our article, we uniformly denote all
entities, including users U and POIs P, as the vertices V, and
the neighbor relations are modeled by user check-in behaviors
(the details can be referred to Section II-A). We let v0 « x,,,
where x denotes the geographical features extracted by (1).
Then, in the training process, we not only learn the vertex
embeddings but also learn the attention aggregation function
which benefits the inductive learning. More concretely, when
an unseen entity of users or POIs comes, we can present
it by aggregating its neighbor embeddings that exist in the
previous training with the learned aggregator (parameterized
by W'). In addition, to learn vertex representations in an unsu-
pervised way, Skip-Gram with negative sampling (NS) [17]
provides an optimization method which keeps a target vertex
far from one’s negative samples in the embedding space
but close to its neighbors. Following is a definition of the
objective function:

N
J (v;) = —log(o (vg Vi) — ZEDJ.NPNS(D)log(a( - VJT vi))

j=1

“)

where v;, v,, and o represent a target vertex, its neighbor-
ing vertex, and the Sigmoid function, respectively, o (x) =
1/(1 + exp(—x)), the NS distribution is denoted by Pns(v)
(the details will be given below), negative samples are drawn
from Pys(v) to form v;, N denotes the number of negative
samples used for training, and v,, v;, and v; are the embed-
dings at the final layer that are aggregated from the features
involving their local neighbors. In this objective, we aim to
encourage all nearby vertices to have similar embeddings
but to be distinct from their negative counterparts. Moreover,
the distribution of NS Pys(v) can be formulated in the
following manner:

f!
ZDEV fvﬂ

where the vertex degree of a graph is f,, and the empirical
degree power is /8, which is usually set to 3/4 [17], [18]. For its
low computational complexity, NS is one of the most widely
used ways of optimizing objective functions for unsupervised
representation learning [17], [18], [19], [20].

Pxs(v) = )

F. IRLM Algorithm

Until now, we have explained the entire training process
of IRLM, illustrated in Fig. 1. More concretely, we present
Algorithm 1 to demonstrate the implementation steps. First,
we perform the GMM [11] to extract the geographical features
from user check-in data (Line 2). Next, we obtain multiple
types of relations among users and POIs by conducting random
walks with a sliding window (Line 3). Then, we start inductive
representation learning by employing NS [17] as the objec-
tive function [referring to (4)] and using stochastic gradient
descent [21] for optimization (Lines 4—16). Until convergence
has been reached, the previous step is repeated.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Algorithm 1 Training Process of IRLM
Input: User check-in data G = (U, P, F, E), dimension
d, geographical cluster K, and number of neural
network layer |L|
Result: Vertex representation v, Vo € V and V = {U, P}
1 begin
2 | Geographic feature extraction: performing the
GMM to extract the geographic features of user
check-in data. Then, for each vertex v, we can obtain
its global geographical influence denoted as
X, = [x1, X2, ..., X|x|], where K represents the set of
clusters;
3 | Graph Reconstruction: Reconstructing a user
check-in graph by conducting random walks to obtain
multiple types of relations between users and POIs
including user-user, user-POI, and POI-POI;
4 | Inductive representation learning;

5 | Randomly initialize the learning parameters
Wi vie{l,...,|L|};

6 v —x,,Yo eV;

7 | while not converge do

8 for [ € [1,|L|] do

9 for v € V do

10 Vﬁ = U(Zuje/\fu,. Oy, W Vljl) referring

to Eq. (2);

1 end

12 ol < o!/|J! ], Yo €V ;

13 end

14 v vt vy eV,

15 Optimization is carried out using stochastic
gradient descent [21] with NS [17] as the objective
function (Eq.(4));

16 | end

17 end

II1. EXPERIMENTS

In experiments, in order to evaluate the effectiveness of our
IRLM in terms of unseen POI recommendation, we conduct
experiments including quantitative and qualitative analysis on
two widely used LSBN datasets. Moreover, we conduct an
ablation test to investigate the effect of variant aggregators
in the IRLM. Besides, we also investigate the sensitivity of
IRLM to the settings of key parameters.

A. Datasets

With the statistics shown in Table I, we run experiments on
four widely used LSBN datasets. All of the above datasets are
available online.?

Foursquare records digital footprints of users when using
mobile phones to study the problems of personalized location
recommendation. We use a portion of data collected in
Singapore from August 2010 to July 2011. A total of 194108
user check-in trajectories have been recorded.

Zhttps://github.com/junyachen/GAIMC/tree/master/upload
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TABLE 1
STATISTICS OF DATASETS
Foursquare Gowalla
# of users 2,321 10,162
# of POIs 5,596 24,250
# of check-ins 194,108 456,988
Time window 2010/08 - 2011/11 | 2009/02 - 2010/10
Avg. check-ins of users 30.62 17.06
Avg. check-ins of POIs 12.71 7.18

Gowalla is another popular LSBN dataset. We have col-
lected a total of 456988 check-ins of these users over the
period of February 2009 to October 2010.

B. Baseline Models

Our method is compared to three baseline approaches that
are useful for representation learning in POI recommendation.
In addition to these baseline methods, there are many other
learning methods that we will not discuss here due to either
their inferior performance as evidenced by corresponding
papers or their transductive nature which is incompatible
with a POI inductive representation learning approach. The
baselines are described as follows.

DeepWalk [12] is an efficient representation learning
approach by conducting random walks on networks to generate
vertex sequences and using the Skip-Gram [17] to learn vertex
embeddings. In the experiment, we employ DeepWalk on the
constructed graph to obtain the vertex representations.

K-means++ [22] is a classical yet effective model. By aug-
menting K-means with a simple, randomized seeding tech-
nique, K -means++ is competitive with the optimal clustering.
Besides, its simplicity and speed are very appealing in practice.
We adopt this model to obtain the probability distributions
over the clusters in the user check-in trajectories. The learned
distributions can be regarded as the representations of users
and POlIs.

GMM [11] is a widely used Bayesian mixture model that
can automatically infer the number of clusters and learn the
probability distributions of input data. We include GMM as
one of the baseline models because we apply it to extract the
geographic features of user check-in data for our model.

GAIMC [6] is a geography-aware inductive matrix com-
pletion approach for personalized POI recommendation. The
technique comprises two steps, including the extraction of
geographic features through the use of a GMM and the
completion of the matrix inductively with recommendations.
In general, it is a matrix factorization-based method that cannot
learn the nonlinear deep relations among vertices.

C. Parameter Settings and Evaluation Metrics

For K-means++ model requiring a predefined cluster num-
ber, we use the one automatically detected by GMM. For
DeepWalk, we follow [12] and set the window size, the walk
length, and the number of walks as 10, 30, and 50, respectively.
Since IRLM exploits an aggregated two-layer neural network,
we follow [15] by setting the number of network layers [ = 2,

and the neighborhood sample sizes of layers §; = 25 and
S = 10, respectively. Furthermore, we perform stochastic
gradient descent with the Adam optimizer [21] using the initial
learning rate le — 3. In order to make all comparisons fair,
we uniformly set d = 128 as the embedding size for all
models.

To evaluate the performance of POI recommendation with
the learned representations, it is natural to predict a link
between users and POIs. We adopt a standard evaluation metric
area under curve (AUC) [23], which represents the probability
that vertices in a random unobserved link are more similar than
those in a random nonexistent link. The AUC metric has been
widely used in recommendation tasks [6]. When the prediction
results perfectly match the ground truth, AUC value will be
one, otherwise, it will be zero.

D. Evaluation on POI Recommendation

In this part, we conduct the POI recommendation with
link prediction to verify the learned representations of our
proposed IRLM. Tables II and III show the comparison results
with different training ratios on Foursquare and Gowalla,
respectively. A boldfaced font is used to highlight the highest
scores. Observations derived from these tables are as follows.

1) We propose a model, IRLM, which performs signif-
icantly better than other models on all datasets with
different training ratios, showing how our method effec-
tively aggregates neighbor information of vertices (such
as users and POIs) to acquire representations.

2) In general, the order of AUC performance is IRLM
> GAIMC > K-means++ > GMM > DeepWalk.
We may reasonably conclude that exploiting the geo-
graphical information can generate more positive effort
than merely using the check-in trajectories, i.e., Deep-
Walk. Moreover, we can observe that GMM perfor-
mance fluctuates along with the training ratios on both
datasets. One possible reason is that the GMM method
is sensitive to the distributions of user check-in data.
In contrast, our method can achieve consistent improve-
ments, which demonstrates that the advantage of IRLM
comes beyond the prior knowledge from GMM (we
apply it to extract geographic information as the input
features of vertices and more details can be referred to
Algorithm 1).

3) More concretely, IRLM can achieve 32.21%, 15.33%,
15.09%, and 5.24% performance gains over DeepWalk,
K-means++, GMM, and GAIMC on average of train-
ing ratios in Foursquare, respectively. Besides, IRLM
can also obtain 99.77%, 20.95%, 28.02%, and 7.85%
improvements over the baselines in Gowalla. We con-
clude that our proposed IRLM can gain more benefits
by jointly learning the constructed graph structures with
the extracted geographic features.

E. Convergence Analysis

In this section, we perform the convergence analysis of
Algorithm 1. As shown in Fig. 2, we report the training losses

Authorized licensed use limited to: Hebei University of Technology. Downloaded on September 03,2022 at 03:45:50 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE 11
RESULTS OF AUC COMPARISON ON FOURSQUARE DATASET

Percentages of Training Set  10% 20% 30% 40 % 50% 60 % 70 % 80% 90 %
DeepWalk 0.4161 04376 0.6268 0.6368 0.6363 0.6358 0.6362 0.6342 0.6200
K-means++ 0.6496 0.6630 0.6628 0.6676 0.6716 0.6780 0.6763 0.6835 0.7001

GMM 0.6452 0.6651 0.6638 0.6932 0.6604 0.6810 0.6747 0.6940 0.6874
GAIMC 0.7184 0.7355 0.7407 0.7491 0.7470 0.7402 0.7387 0.7394 0.7237
IRLM 0.7217 0.7452 0.7609 0.7780 0.7876 0.7939 0.7965 0.7962 0.8002
TABLE III
RESULTS OF AUC COMPARISON ON GOWALLA DATASET

Percentages of Training Set 10% 20% 30% 40 % 50% 60 % 70% 80% 90 %
DeepWalk 0.4797 0.4455 04873 04161 0.3863 0.4357 0.3929 0.3977 0.4286
K-means++ 0.6739 0.6826 0.7034 0.7056 0.7114 0.7285 0.7274 0.7223 0.7365

GMM 0.6503 0.6516 0.6752 0.6902 0.7091 0.7307 0.5697 0.7444 0.6172
GAIMC 0.7407 0.7534 0.7831 0.8028 0.8071 0.8021 0.8257 0.8364 0.8169
IRLM 0.7510 0.8249 0.8514 0.8713 0.8821 0.8851 0.8859 0.8866 0.8923
1.50
—— TR=0.1 3-501
1.45
5.25 A
1.40 5.00 -
" 1.35 w 4.75
. 1.30 . 4.50 A
1.25 4.25
1.20 4.00 A
' 12345678 91011121314151617181920 123456 7 8 91011121314151617181920
# Epoch # Epoch
(@ (b)

Fig. 2. Convergence analysis on (a) Foursquare and (b) Gowalla datasets. We report their training losses in terms of the epochs. “TR” represents the training

percentages of data.

with the epochs on Foursquare and Gowalla, respectively,
where we can see that our method can generally achieve
convergence after ten epochs with different training ratios.

Moreover, we use ten-fold cross-validations for these two
datasets. Specifically, we adopt the percentages of 6:2:2 to
partition the training set, the validation set, and the testing
set. The experimental results are reported in Fig. 3, where we
have the following observation.

From the training loss curves of Fig. 3(a) and (b), our
method can obtain convergence after ten epochs on Foursquare
and Gowalla. At the same time, both the performance trends of
the test set and validation set are consistent on these datasets.
More concretely, the AUC performances of the validation
and test sets become stable around 0.8729 and 0.8734 after
ten epochs. One possible reason is that our model is an
unsupervised learning method without node labels, as such,
it is not quite easy to be over-fitting in the training process.

FE. Ablation Test of Variant Aggregators for Representation
Learning

In this part, we try to investigate the effect of variant
aggregators in the proposed IRLM. Apart from using an
attention aggregator [as mentioned in (2)], we also exploit four
types of aggregate functions including GCN [14], meanpool,
maxpool, and LSTM [24] to conduct an ablation test for rep-
resentation learning. We report the AUC performance of these
methods with training ratios {0.1, 0.3, 0.5} on Foursquare and
Gowalla, as shown in Fig. 4. Following are our observations.
From Fig. 4(a), we can observe that the order of AUC
performance is IRLM > IRLM-LSTM > IRLM-meanpool >
IRLM-maxpool > IRLM-GCN. More concretely, IRLM out-
performs IRLM-LSTM by 6.05%, 6.87%, and 8.96% on
three sets of training ratios, respectively. Besides, from
Fig. 4(b), we can see that the performance order is
IRLM > IRLM-LSTM > IRLM-GCN > IRLM-maxpool >
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Fig. 4. Ablation study of variant aggregators on AUC performance over (a) Foursquare and (b) Gowalla.
TABLE IV
RESULTS OF THE COLD-START PERFORMANCE ON FOURSQUARE
Avg. check-ins of users | Avg. check-ins of POIs New users New POIs
Foursquare ; . ; . . . AUC
in the traning set in the training set in the test set | in the test set
IRLM w/o
. 7.57 3.71 238 1347 0.7005
Graph Reconstruction
IRLM 9.35 5.42 238 1347 0.7217
Improv. 23.51% 46.09% - - 3.03%

IRLM-meanpool, and IRLM outperforms IRLM-LSTM by
4.48%, 6.33%, 6.65%, respectively. In general, we can con-
clude that our method is more effective than the other aggre-
gators based on the comparison.

G. Evaluation on the Cold-Start Performance

In this section, we aim to conduct the performance com-
parisons of the cold-start. As shown in Tables IV and V,
we report the average check-ins of users and the average
check-ins of POIs in the training sets, new users, and new POIs
in the test sets, and the AUC performances on Foursquare and
Gowalla, respectively. More concretely, as shown in Table IV,
our IRLM obtains 23.51%, 46.09%, and 3.03% improvements
over IRLM without graph reconstruction (refer to Section II-D)
on the density of the average check-ins and AUC performance,
respectively. Besides, as shown in Table V, IRLM achieves up

to 35.40%, 67.69%, and 1.36% improvements accordingly on
Gowalla. These demonstrate that our method can get a boost
from the graph reconstruction and also can perform well in
the cold-start scenario.

H. Parameter Sensitivity

Fig. 5 shows the influence of the key parameters, neigh-
bor sample size (as mentioned in Section III-C), on the
AUC performance of our proposed method. Here, we use
the IRLM method for evaluating the parameter influence
on Foursquare dataset. Specifically, the axes are S§; and
S», with their numbers varying in {10, 15,20, 25, 30}. The
results indicate that our model is generally robust to the
neighbor sample size settings, producing the best performance
when §; = 15 and S, = 15.
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TABLE V
RESULTS OF THE COLD-START PERFORMANCE ON GOWALLA
Gowalla Avg. check-m.s of users Avg. check-%n.s of POIs . New users . New POIs AUC
in the traning set in the training set in the test set | in the test set
IRLM w/o
. 4.52 2.29 2461 9063 0.7409
Graph Reconstruction
IRLM 6.12 3.84 2461 9063 0.7510
Improv. 35.40% 67.69% - - 1.36%
0.75
0.74 S
<
. 073
A
= 0.72

35

Fig. 5.

In this case, the parameter influence is evaluated using IRLM on the Foursquare dataset. The variables S; and S, are both used as axes, and their

values are continuously varied in a range {10, 15, 20, 25, 30} in order to evaluate how they affect AUC performance.

IV. RELATED WORK

In this part, we demonstrate the related work of POI
recommendation with LBSNs.

A. Spatio-Temporal Influences in POI Recommendation

To begin with, classical recommender systems conducting
POI recommendations are mostly based on the explicit ratings
of POIs [25] or exploiting users’ social preferences as data
supplements [26]. However, in the real world, user check-in
data without rating information and user social preferences are
more common and easy to acquire. Therefore, many works
based on trajectories [6], [27] are proposed in recent years.
They regard the POIs as the items in E-commerce, then, many
traditional recommendation methods can be adopted for POI
recommendation. For example, Ye et al. [7] incorporate a
collaborative filtering approach with friendly relations. Berjani
and Strufe [28] propose a more general matrix factorization
method with regularization on user check-in data. Neverthe-
less, these models do not take into account the geographical
influences which are useful for improving the performance of
POI recommendation.

To estimate the interests of new users via geographical
influences, Ye et al. [9] employ a power-law distribution
to model the relationship between users and POIs. Then,
Wang et al. [10] make further improvement by employing
more complicated distributions. All these models follow the

assumption that the influences of POIs on users are under
certain distributions. However, in real-world data, the user
check-in trajectories are usually sparse. As such, it is difficult
to estimate the impact of POI distributions for users with lim-
ited user behavior tracks. Moreover, these mentioned models
cannot deal with the case that users may be more interested
in remote POIs. Besides, all these models are transductive
learning methods, thereby being incapable of dealing with the
unseen users and POIs untrained before.

B. Addressing Sparse User Trajectories in POI
Recommendation

To address the sparse user check-in trajectories, some efforts
have been devoted to exploiting supplementary data. For
instance, gSCorr [29] proposes to use social correlations with
limited user historical behaviors for solving the cold-start
location recommendation problem. Similar geo-social corre-
lation models such as [30], [31], [32] are also proposed to
recommend the target user with the set of locations visited by
their friends. In general, these methods address the cold-star
problem based on the following assumptions. First, the target
users and their friends share common interests. The target
users are interested in the locations with high preferences by
their friends. However, in practice, getting sufficient context
information (i.e., social ties of users) is difficult while pure
POI check-in records are more prevalent [33].
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To address the sparse problem with the general user check-
in data, in this article we propose an IRLM for personalized
location recommendation. Moreover, our model can conduct
inductive learning which is suitable for dealing with the unseen
users and POIs not being trained before.

V. CONCLUSION

The goal of this article is to develop an IRLM for person-
alized location recommendations. Specifically, our model can
jointly consider the global and local perspectives of users and
POI information. We first extract the geographical features by
taking all check-in data into account. Then, we learn the user
and POI embeddings with an attention convolutional network
by considering the aggregation of vertex neighbors. In general,
our IRLM can efficiently generate embeddings for the users
and POIs that have not been visited before in the training
process. Therefore, when new users and POIs are emerging,
IRLM can benefit POI recommendations. In our experiments
on real-world LBSN datasets, the effectiveness of our method
is demonstrated at different training scales.
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