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Abstract

Deep learning has redefined AI thanks to the rise of artifi-
cial neural networks, which are inspired by neurological net-
works in the brain. Through the years, this dualism between
AI and neuroscience has brought immense benefits to both
fields, allowing neural networks to be used in a plethora of
applications. Neural networks use an efficient implementa-
tion of reverse differentiation, called backpropagation (BP).
This algorithm, however, is often criticized for its biological
implausibility (e.g., lack of local update rules for the parame-
ters). Therefore, biologically plausible learning methods that
rely on predictive coding (PC), a framework for describing
information processing in the brain, are increasingly studied.
Recent works prove that these methods can approximate BP
up to a certain margin on multilayer perceptrons (MLPs), and
asymptotically on any other complex model, and that zero-
divergence inference learning (Z-IL), a variant of PC, is able
to exactly implement BP on MLPs. However, the recent liter-
ature shows also that there is no biologically plausible method
yet that can exactly replicate the weight update of BP on com-
plex models. To fill this gap, in this paper, we generalize (PC
and) Z-IL by directly defining it on computational graphs, and
show that it can perform exact reverse differentiation. What
results is the first PC (and so biologically plausible) algorithm
that is equivalent to BP in the way of updating parameters
on any neural network, providing a bridge between the in-
terdisciplinary research of neuroscience and deep learning.
Furthermore, the above results in particular also immediately
provide a novel local and parallel implementation of BP.

Introduction
In recent years, neural networks have achieved amazing re-
sults in multiple fields, such as image recognition (He et al.
2016; Krizhevsky, Sutskever, and Hinton 2012), natural lan-
guage processing (Vaswani et al. 2017; Devlin et al. 2019),
and game playing (Silver et al. 2017, 2016). All the mod-
els designed to solve these problems share a common an-
cestor, multilayer perceptrons (MLPs), which are fully con-
nected neural networks with a feedforward multilayer struc-
ture and a mapping function Rn → Rm. Although MLPs
are able to approximate any continuous function (Hornik,
Stinchcombe, and White 1989) and theoretically can be
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used for any task, the empirical successes listed above show
that more complex and task-oriented architectures perform
significantly better than their fully connected ones. Hence,
the last decades have seen the use of different layer struc-
tures, such as recurrent neural networks (RNNs) (Hochreiter
and Schmidhuber 1997), transformers (Vaswani et al. 2017),
convolutional neural networks (CNNs), and residual neural
networks (He et al. 2016). Albeit diverse architectures may
look completely different, their parameters are all trained us-
ing gradient-based methods, creating a need for a general
framework to efficiently compute gradients. Computational
graphs, which are decompositions of complex functions in
elementary ones, represent the ideal solution for this task, as
they generalize the concept of neural network. In fact, they
allow the use of reverse differentiation to efficiently compute
derivatives and hence update the parameters of the network.
In deep learning, this technique is used to quickly propagate
the output error through the network, and it is hence famous
under the name of error backpropagation (BP) (Rumelhart,
Hinton, and Williams 1986). While being a milestone of the
field, this algorithm has often been considered biologically
implausible, as it does not follow the rules of biological net-
works in the brain to update the parameters and propagate
information (Crick 1989). Here, we use the term “biologi-
cally plausible” to refer to models that satisfy a list of mini-
mal properties required by a possible neural implementation,
namely, local computations and local plasticity (change in a
connection weight depending only on the activity of the con-
nected neurons) (Whittington and Bogacz 2017).

An influential model of information processing in the
brain, called predictive coding (PC) (Rao and Ballard 1999),
is used to describe learning in the brain, and has promis-
ing theoretical interpretations, such as the minimization of
free energy (Bogacz 2017; Friston 2003, 2005; Whitting-
ton and Bogacz 2019) and probabilistic models (Whitting-
ton and Bogacz 2017). Originally proposed to solve unsu-
pervised learning tasks, PC has been found to be successful
also in supervised models (Whittington and Bogacz 2017),
and its standard implementation, called inference learning
(IL) (Whittington and Bogacz 2017), has also been shown
to be able to approximate asymptotically BP on MLPs,
and on any other complex model (Millidge, Tschantz, and
Buckley 2020). Furthermore, a recent work has proved that
PC can do exact BP on MLPs using a learning algorithm



called zero-divergence inference learning (Z-IL) (Song et al.
2020). Z-IL is a biologically plausible method with local
connections and local plasticity. While this exactness result
is thrilling and promising, Z-IL has limited generality, as it
has only been shown to hold for MLPs. Actually, a recent
study shows that there are no published successful meth-
ods to train high-performing deep neural networks on diffi-
cult tasks (e.g., ImageNet classification) using any algorithm
other than BP (Lillicrap et al. 2020). This shows the exis-
tence of a gap in our understanding of the biological plausi-
bility of BP, which can be summarized as follows: there is
an approximation result (IL), which has been shown to hold
for any complex model (Whittington and Bogacz 2017; Mil-
lidge, Tschantz, and Buckley 2020), and an exactness result
(Z-IL), only proven for MLPs.

In this work, we close this gap by analyzing the Z-IL algo-
rithm, and generalize the exactness result to every complex
neural network. Particularly, we start from analyzing the Z-
IL algorithm on different architectures by performing one
iteration of BP and one iteration of Z-IL on two identically
initialized networks, and compare the two weight updates
by computing the Euclidean distance. The results, reported
in Table 1 below, show two interesting things: first, they sug-
gest that the exactness result holds for CNNs and many-to-
one RNNs; second, they show that it does not hold for more
complex architectures, such as residual and transformer neu-
ral networks. An analysis of the dynamics of the error prop-
agation of Z-IL shows that the root of the problem is in the
structure of the computational graph: in ResNet, for exam-
ple, the skip connections design a pattern that does not allow
Z-IL to exactly replicate the weight update of BP. In CNNs
and RNNs, this does not happen. The main contributions of
this paper are briefly summarized as follows.
• We show that Z-IL is also able to exactly implement BP

on CNNs and RNNs. Particularly, we give a direct deriva-
tion of the equations, and extend the proof of the original
formulation of Z-IL on MLPs to CNNs and RNNs.

• We then generalize IL (and Z-IL) to work for every com-
putational graph, and so any neural network. We also pro-
pose a variant of Z-IL that is directly defined on compu-
tational graphs, which we prove to be equivalent to BP in
the way of updating parameters on any neural network.

• This results into a novel local and parallel implementa-
tion of BP. We experimentally analyze the running time
of Z-IL, IL, and BP on different architectures. The ex-
periments show that Z-IL is comparable to BP in terms of
efficiency, and several orders of magnitude faster than IL.

• There are other impacts on machine learning beyond the
above. In particular, the above novel formulation of BP
in terms of IL may inspire other neuroscience-based al-
ternatives to BP. Furthermore, deep-learning-based ap-
proaches may actually be closer related to information
processing in the brain than commonly thought.

• At the same time, the first biologically plausible algo-
rithm that exactly replicates the weight updates of BP on
mapping functions of complex models may have a sim-
ilarly big impact in neuroscience, as it shows that deep
learning is actually highly relevant in neuroscience.

Computational Graphs
A computational graph G=(V,E), where V is a finite non-
empty set of vertices, and E is a finite set of edges, is a di-
rected acyclic graph (DAG) that represents a complex func-
tion G as a composition of elementary functions. Every in-
ternal vertex vi is associated with one elementary function
gi, and represents the computational step expressed by gi.
Every edge pointing to this vertex represents an input of gi.
For ease of presentation, the direction considered when us-
ing this notation is the reverse pass (downwards arrows in
Fig. 1). Furthermore, we call ei,j ∈ E the directed edge that
starts at vi and ends at vj . The first n vertices v1, . . . , vn are
the leaves of the graph and represent the n inputs of the func-
tion G, while the last vertex vout represents the output of the
function. We call di the minimum distance from the output
node vout to vi (i.e., the minimum number of edges separat-
ing vi and vout). An example of a computational graph for
the function G(z1, z2) = (

√
z1 + z2)

2 is shown in Fig. 1,
where the arrows pointing upwards denote the forward pass,
and the ones pointing downwards the reverse pass. We call
C(i) and P (i) the indices of the child and parent vertices
of vi, respectively. Hence, input nodes (nodes at the bottom)
have no child vertices, and output nodes (nodes at the top)
have no parent vertices. We now briefly recall reverse differ-
entiation, and so BP, on computational graphs, and we then
newly define how to perform PC on computational graphs.

BP on Computational Graphs
Let G : Rn → R be a differentiable function, and {gi} be
a factorization of G in elementary functions, which have to
be computed according to a computational graph. Particu-
larly, a computational graph G = (V,E) associated with G
is formed by a set of vertices V with cardinality |V |, and
a set of directed edges E, where an edge ei,j is the arrow
that points to vj starting from vi. With every vertex vi ∈ V ,
we associate an elementary function gi : Rki → R, where ki
is the number of edges pointing to vi. The choice of these
functions is not unique, as there exist infinitely many ways
of factoring G. It hence defines the structure of a particular
computational graph. Given an input vector z̄ ∈ Rn, we de-
note by µi the value of the vertex vi during the forward pass.
This value is computed iteratively as follows:

µi =

{
zi for i ≤ n ;

gi({µj}j∈C(i)) for i > n .
(1)

We then have G(z̄) = µ|V | = µout. The computational flow
just described is represented by the upward arrows in Fig. 1.
We now introduce the classical problem of reverse differ-
entiation, and show how it is used to compute the deriva-
tive relative to the output. Let z̄ = (z1, . . . , zn) be an input
(which in the case of MLPs will correspond to the weight
parameters on the basis of which the output of the network
is computed, as we will explain in the next section), and
G(z̄)=µout be the output. Reverse differentiation is a key
technique in machine learning and AI, as it allows to com-
pute ∂G/∂zi for every i < n efficiently. This is necessary
to implement BP at a reasonable computational cost, espe-



Figure 1: Left: computational graph of the function G(z1,
z2) = (

√
z1 + z2)

2. Every internal vertex (red box) pictures
its associated function gi. Right: its predictive coding coun-
terpart. Pointed upwards, the arrows related to the feedfor-
ward pass. The value nodes xi of the input neurons are set to
the input of the function (ζ1 and ζ2). Hence, we have omitted
them from the plots to make the notation lighter. The same
notation is adopted in later figures.

cially considering the extremely overparametrized architec-
tures used today. This is done iteratively as follows:

∂G
∂µi

=
∑

j∈P (i)

∂G
∂µj

· ∂µj

∂µi
=

∑
j∈P (i)

∂G
∂µj

· ∂gj
∂µi

. (2)

To obtain the desired formula for the input variables, it suf-
fices to recall that µi = zi for every i ≤ n.
Update of the leaf nodes: Given an input z̄, we consider a
desired output y for the function G. The goal of a learning
algorithm is to update the input parameters (z1, . . . , zn) of
a computational graph to minimize the quadratic loss E =
1
2 (µout − y)2. Hence, the input parameters are updated by:

∆zi = −α · ∂E
∂zi

= α ·
∑

j∈P (i)
δj ·

∂gj
∂zi

, (3)

where α is the learning rate, and ∂E / ∂zi is computed us-
ing reverse differentiation. We use the parameter δj to repre-
sent the error signal, i.e., the propagation of the output error
among the vertices of the graph. It can be computed accord-
ing to the following recursive formula:

δi =

{
µout − y if i = |V | ;∑

j∈P (i) δj ·
∂gj
∂zi

if n < i < |V |. (4)

IL on Computational Graphs
We now show how the just introduced forward and backward
passes change when considering a PC computational graph
G = (V,E) of the same function G. A similar framework
to the one that we are about to show has been developed in
(Millidge, Tschantz, and Buckley 2020). We associate with
every vertex vi, with i > n, a new time-dependent random
variable xi,t, called value node, and a prediction error εi,t.
We denote a parameter vector (which for MLPs corresponds
to weights) by (ζ1, . . . , ζn), so ζi in IL corresponds to zi in
BP, but we use different symbols, as they may not be nec-
essarily equal to each other. The values µi are computed as
follows: for the leaf vertices, we have µi,t = ζi and εi,t = 0
for i ≤ n, while for the other values, we have

µi,t = gi({xj,t}j∈C(i)) and εi,t = µi,t − xi,t. (5)

This allows to compute the value µi,t of a vertex by only us-
ing information coming from vertices connected to vi. As in
the case of PC networks, every computation is strictly local.
The value nodes of the network are updated continuously
to minimize the following loss function, defined on all the
vertices of G:

Ft =
1

2

∑|V |

i=1
(εi,t)

2. (6)

The output xout of G(ζ̄) is then computed by minimizing
this energy function through an inference process. The up-
date rule is ∆xi,t = −γ ∂Ft/∂xi,t, where γ is a small posi-
tive constant, called integration step. Expanding this gives:

∆xi,t = −γ · ∂Ft

∂xi,t
= γ ·(εi,t+

∑
j∈P (i)

εj,t ·
∂µj,t

∂xi,t
) . (7)

Note that during the forward pass, all the value nodes xi,t

converge to µi, as t grows to infinity. This makes the final
output of the forward passes of inference learning on the
new computational graph equivalent to that of the normal
computational graph.
Update of the leaf nodes: Let ζ̄ be a parameter vector, and
y be a fixed target. To update the parameter vector and min-
imize the error on the output, we fix xout = y. Thus, we
have εout,t = µout − y. By fixing the value node xout,t,
most of the error nodes can no longer decay to zero. Hence,
the error εout,t gets spread among the other error nodes on
each vertex of the computational graph by running the in-
ference process. When the inference process has either con-
verged, or it has run for a fixed number of iterations T , the
parameter vector gets updated by minimizing the same loss
function Ft. Thus, we have:

∆ζi = −α · ∂Ft

∂ζi
= α ·

∑
j∈P (i)

εj,t ·
∂µj,t

∂ζi
. (8)

All computations are local (with local plasticity) in IL, and
the model can autonomously switch between prediction and
learning via running inference. The main difference between
BP and IL on computational graphs is that the update of the
parameters of BP is invariant of the structure of the compu-
tational graph: the way of decomposing the original function
G into elementary functions does not affect the update of the
parameters. This is not the case for IL, as different decompo-
sitions lead to different updates of the value nodes, and so of
the parameters. However, it has been shown that, while fol-
lowing different dynamics, these updates are asymptotically
equivalent (Millidge, Tschantz, and Buckley 2020).

Z-IL for MLPs
Recently, a new learning algorithm, called zero-divergen-

ce inference learning (Z-IL), was shown to perform exact
backpropagation on fully connected predictive coding net-
works (PCNs), the PC equivalent of MLPs. Particularly, this
result states that starting from a PCN and a MLP with the
same parameters, the update of the weights after one iter-
ation of BP is identical to the one given by one iteration of
Z-IL. We now provide a brief description of the original Z-IL
algorithm. To be as close as possible to the original formu-
lation of Z-IL, we adopt the same notation of that work, and



Figure 2: Left: example of a 2-layer PCN. In these networks, it is possible to realize every computation locally using error nodes
and value nodes in a biologically plausible way. For a more detailed discussion, we refer to (Whittington and Bogacz 2017).
Right: the corresponding computational graph.

Algorithm 1: Learning one training pair (s̄, y) with Z-IL

Require: xout is fixed to y; γ = 1
1: Initialize xl,0 = ζl for every leaf node; xi,0 = µi,0 for

every internal node
2: for t = 0 to L do
3: for each vertex vi do
4: Update xi,t to minimize Ft via Eq. (7)
5: end for
6: if t = l then
7: Update ζ̄l to minimize Ft via Eq. (8)
8: end if
9: end for

index the layers starting from the output layer (layer 0), and
finishing at the input layer (layer L).

Let G(z̄) be the function expressed by an artificial neural
network (ANN), represented in Fig. 2. The leaf vertices of
its computational graph are the weight matrices, represented
by the blue nodes in Fig. 2. Every weight matrix ζ̄l has the
distance l from the output vertex.

This new algorithm differs from standard inference learn-
ing for the following reasons:

1. The initial error εi,0 of every vertex vi is set to zero. This
is done by performing a forward pass from an input vec-
tor s̄ and setting µi,0 = xi,0 for every vertex vi.

2. The weight parameters ζl of layer l get only updated at
time step t = l, making the inference phase only last
for L iterations.

Update of the leaf nodes: As stated, Z-IL introduces a new
rule to update the weights of a fully connected PCN. Using
the notation adopted for computational graphs, every leaf
node ζ̄l in Fig. 2 gets updated at t = l. Alg. 1 shows how Z-
IL performs a single update of the parameters when trained
on a labelled point (s̄, y). For a detailed derivation of all the
equations, we refer to the original paper (Song et al. 2020).
The main theoretical result is as follows, formally stating
that the update rules of BP and Z-IL are equivalent in MLPs.

Theorem 1. Let M be a fully connected PCN trained with
Z-IL, and let M ′ be its corresponding MLP, initialized as M ,
and trained with BP. Then, given the same data point s to

Table 1: Divergence between one update of weights of BP
and Z-IL on different models, initialized in the same way.

MLP CNNs RNNs ResNet18 Transformer

Divergence: 0 0 0 4.53× 107 7.29× 104

both networks, we have

∆z̄l = ∆ζ̄l (9)

for every layer l ≥ 0.

Z-IL for CNNs and RNNs
CNNs are a neural architecture that is highly used in com-
puter vision, with a connectivity pattern that resembles the
structure of animals’ visual cortex. The parameters of a con-
volutional layer are contained in different kernels, vectors
that act on the input pattern via an operation called con-
volution. Many-to-one RNNs, on the other hand, deal with
sequential inputs, and consist of three different weight ma-
trices: two are used recursively for the inputs and hidden
layers, and the last one is the output layer.

While Theorem 1 has only been proven for MLPs, the ex-
perimental results presented in Table 1 suggest that the orig-
inal formulation of Z-IL is also able to exactly replicate the
weight update of BP on CNNs and RNNs. Inspired by our
empirical findings, we prove that the update rules of BP and
Z-IL are equivalent in convolutional and recurrent networks,
generalizing the result of Theorem 1 to CNNs and RNNs:

Theorem 2. Let M be a convolutional or a recurrent PCN
trained with Z-IL, and let M ′ be its corresponding model,
initialized as M , and trained with BP. Then, given the same
data point to both networks, the update of all parameters
performed by Z-IL on M is equivalent to that of BP on M ′.

The experimental results presented in Table 1, however,
show that the original definition of Z-IL does not generalize
to more complex architectures. In what follows, we solve
this problem by defining Z-IL directly on computational
graphs, and prove a generalization of Theorems 1 and 2.

The Problem of Skip Connections
In this section, we provide a toy example that shows how
Z-IL and BP behave on the computational graph of an ANN



Figure 3: Left: computational graph of a 3-layer MLP with a
residual connection, corresponding to the function G(s, z̄) =
sz3 + sz3z2z1. Right: an equivalent computational graph,
with the addiction of an identity node.

with a skip connection. Particularly, we show that it is im-
possible for Z-IL to replicate the same update of BP on all
the parameters, unless the structure of the computational
graph is altered. Consider the following function, corre-
sponding to a simple MLP with a skip connection, repre-
sented in Fig. 3, left side:

G(s, z̄) = sz3 + sz3z2z1. (10)

BP: Given an input value s and a desired target y, BP com-
putes the gradient of every leaf node using reverse differen-
tiation, and updates the parameters of z3 as follows:

∆z3 = −α · ∂E
∂z3

= α · δ(z1z2 + 1)s, (11)

where δ = (µout − y), and E is the quadratic loss defined
on the output node.
Z-IL: Given an input value s and a desired target y, the in-
ference phase propagates the output error through the graph
via Eq. (8). Z-IL updates ζ3 at t = 3, as it belongs to the
third hidden layer. This leads to the following:

∆ζ3 = −α · ∂F3

∂ζ3
= α · δζ1ζ2s, (12)

where δ = εout,0 = (µout,0 − y), and F2 is computed ac-
cording to Eq. (6). Note that this update is different from
the one obtained by BP. We now analyze the reason of this
mismatch and provide a solution.

Identity Vertices
The error signal propagated by the inference reaches ζ3 in
two different moments: t = 2 from the output vertex, and
t = 3 from g2. Dealing with vertices that receive error
signals in different moments is problematic for the original
formulation of the Z-IL algorithm, as every leaf node only
gets updated once. Furthermore, changing the update rule
of Z-IL does not solve the problem, as no other combina-
tion of updates produces the same weight update defined in
Eq. (11). To solve this problem, we then have to assure that
every node of the graph is reached by the error signal in a
single time step. This result is trivially obtained on compu-
tational graphs that are levelled DAGs, i.e., graphs where
every directed path connecting two vertices has the same

Figure 4: Computational graphs of the same function G.
Left: the original graph G. Right: the transformed graph,
with the identity vertices in green.

length. Here, the error reaches every vertex at a single, spe-
cific time step, no matter how complex the graph structure
is. We now show how to make every computational graph
levelled, without affecting the underlying function and the
computations of the derivatives.

Every elementary function gi can be written as a compo-
sition with the identity function, i.e., gi ◦ Id. Given two ver-
tices vi and vj connected via the edge ei,j , it is then possible
to add a new vertex vk by splitting the edge ei,j into ei,k and
ek,j , whose associated function gk is the identity. This leaves
the function expressed by the computational graph unvaried,
as well as the computation of the derivatives, the forward
pass, and the backward pass of BP. However, placing the
identity vertices in the correct places, makes the computa-
tional graph levelled, allowing every vertex to receive the er-
ror signals at the same time step. Consider now the levelled
graph of Fig. 3, right side, where an identity node has been
added in the skip connection. The error signal of both g1 and
gout reaches g2 simultaneously at t = 2. Hence, at t = 3,
Z-IL updates ζ3 as follows:

∆ζ3 = −α · ∂F3

∂ζ3
= α · δ(ζ1ζ2 + 1)s. (13)

If we have ζi = zi, this weight update is equivalent to the
one performed by BP and expressed in Eq. (11). Hence, Z-IL
is able to produce the same weight update of BP in a simple
neural network with one skip connection, thanks to a single
identity vertex. In the next section, we generalize this result.

Levelled Computational Graphs
In this section, we show that, given any computational graph,
it is always possible to generate an equivalent, levelled ver-
sion of it. Particularly, we provide an algorithm that per-
forms this task by adding identity nodes. This leads to the
first result needed to prove our main theorem: given any
function G, it is always possible to consider an equivalent,
levelled, computational graph. This allows to partition the
nodes of G in a level structure, where a level structure of a
directed graph is a partition of the vertices into subsets that
have the same distance from the top vertex.

Let G be a computational graph, and S1, . . . , SK be the
family of subsets of V defined as follows: a vertex vi is con-
tained in Sk if there exists a directed path of length k con-
necting vi to vout, i.e.,

Sk = {vi ∈ V | ∃ a path (eout,j1 , . . . , ejk−1,i)} . (14)



Algorithm 2: Generating a levelled DAG G′ from G

Require: G is a DAG, and (v0, . . . , vn) a topological sort.
1: for every j in (0, n) included do
2: for each vertex vi in P (j) do
3: Add (dj −Di) identity vertices to ei,j
4: end for
5: end for

Hence, we have that vout is contained in S0, its children
vertices in S1, and so on. In a levelled graph, every ver-
tex is contained in one and only one of the subsets, and
this partition defines its level structure. Let Di be the maxi-
mum distance between vout and the parent nodes of vi, i.e.,
Di = maxvj∈P (i) dj . We now show for every DAG G how
to make every vertex vi to be contained in only one sub-
set Sk, without altering the dynamics of the computational
graph via the addition of identity nodes.

Let G be a DAG with root v0, and let (v0, v1, . . . , vn) be a
topological sort of the vertices of G. Starting from the root,
for every vertex vj , we replace every existing edge ei,j with
the following path:

vi → Id → · · · → Id → vj , (15)

which connects vi to vj via dj − Di identity nodes. When
this process has been repeated on all the vertices, we obtain a
levelled DAG. This is equivalent to having every vi ∈ G that
belongs to one and only one subset Sk, as every pair of dis-
connected paths between two vertices has the same length,
thanks to the addition of identity vertices. Hence:
Theorem 3. Given a function G : Rn → R and any factor-
ization of it expressed by elementary functions {gi}, there
exist a levelled computational graph G = (V,E) that repre-
sents this factorization.

The above theorem shows that every neural network can
be expressed as a levelled computational graph, and hence
that every result shown for levelled computational graphs
can be naturally extended to every possible neural network.

Z-IL for Levelled Computational Graphs
In this section, we show that a generalized version of Z-IL
allows PCNs to do exact BP on any computational graph.

Let G=(V,E) be the levelled computational graph of a
function G : Rn → R, and consider the partition of V via
its level structure S1, . . . , SK . We now present a variation of
IL for computational graphs that allows predictive coding to
exactly replicate the parameter update of BP, called Z-IL for
computational graphs. This algorithm is similar to IL, but
the following two differences are introduced:
Forward pass: Differently from IL, where input and output
are presented simultaneously, Z-IL first presents the input
vector to the function, and performs a forward pass. Then,
once the values µi of all the internal vertices have been com-
puted, the value nodes are initialized to have zero error, i.e.,
xi,0 =µi, and the output node is set equal to the label y. This
is done to emulate the behaviour of BP, which first computes
the output vector, and then compares it to the label.

Algorithm 3: Z-IL for computational graphs.

Require: xout is fixed to a label y,
Require: {Sk}k=0,...,K is a level structure of G(V,E),
Require: xi,0 = µi,0 for every internal node.

1: for t = 0 to K do
2: for each internal vertex vi do
3: Update xi,t to minimize Ft via Eq. (7)
4: Update each leaf node ζi,t ∈ St to minimize Ft via

Eq. (8)
5: end for
6: end for

Update of the leaf nodes: Instead of continuously running
inference on all the leaf nodes of G, we only run it on the
internal vertices. Then, at every time step t, we update all the
leaf nodes vi ∈ St, if any. More formally, for every internal
vertex vi, training continues as usual via Eq. (7), while leaf
nodes are updated according to the following equation:

∆ζi,t =

{
γ ·

∑
j∈P (i) εj,t ·

∂µj

∂ζi
if vi ∈ St

0 if vi ̸∈ St.
(16)

This shows that one full update of the parameters requires
t = K steps. Note that for multilayer networks, K is equal
to the number of layers L. Overall, the functioning of Z-
IL for computational graphs is summarized in Algorithm 3.
We now show that this new formulation of Z-IL is able to
replicate the same weight update of BP on any function G.
Theorem 4. Let (z̄, y) and (ζ̄, y) be two points with the
same label y, and G : Rn → R be a function. Assume that
the update ∆z̄ is computed using BP, and the update ∆ζ̄ us-
ing Z-IL with γ = 1. Then, if z̄ = ζ̄, and we consider a
levelled computational graph of G, we have

∆zi = ∆ζi (17)

for every i ≤ n.
This proves the main claims made about Z-IL: (i) exact

BP and exact reverse differentiation can be made biologi-
cally plausible on the computational graph of any function,
and (ii) Z-IL is a learning algorithm that allows PCNs to
perfectly replicate the dynamics of BP on any function. Par-
ticularly, adding identity nodes to the computational graphs
to produce equivalence to BP has non-trivial implications:
it shows that the key difference between the PC model of
learning in the brain and BP lies in the synchronization of
error propagation. This offers a novel perspective to investi-
gate the gap between BP and neural models.

Experiments
In the above sections, we have theoretically proved that the
proposed generalized version of Z-IL is equivalent to BP
on every possible neural model. Multiple experiments, re-
ported in the supplementary material, further confirmed this:
the divergences of weight updating between BP and Z-IL
are always zero on all tested neural networks. So, there is
no need for detailed experimental evaluation for the equiva-
lence. In this section, we will complete the picture of this



Table 2: Average running time of each weights update (in ms) of BP, IL, and Z-IL for computational graphs.

Method MLP AlexNet (Krizhevsky, Sutskever, and Hinton 2012) RNN ResNet18 (He et al. 2016) Transformer (Vaswani et al. 2017)

BP 3.72 8.61 5.64 12.43 20.43
IL 594.25 661.53 420.01 1452.34 1842.64

Z-IL 3.81 8.86 5.67 12.53 20.53

work with experimental studies to evaluate the computa-
tional efficiency of Z-IL, and quantitatively compare it with
those of BP and IL. Particularly, we perform extensive ex-
periments on different architectures, testing multiple models
per architecture. The results of BP, IL, and Z-IL, averaged
over all the experiments per model, are reported in Table 2,
and a detailed description of the experiments, as well as all
the parameters needed to reproduce the results, are provided
in the supplementary material.

Results and Evaluations
As shown in Table 2, the computational time of Z-IL is very
close to that of BP, and orders of magnitude lower than that
of IL. This proves that Z-IL is an efficient alternative to BP
in practice, instead of just being a theoretical tool. The high
computational time of IL is due to the large number of it-
erations T . For example, for small MLPs, T is set to 20
in (Whittington and Bogacz 2017), and as larger models re-
quire higher numbers of iterations to converge, T is set be-
tween 100 and 200 for mid-size architectures, such as RNNs
and CNNs in (Millidge, Tschantz, and Buckley 2020). Note
that the approximation results of these works are achieved
with fixed values of T , and not at convergence. Z-IL explains
the above findings, as we show that strict equivalence can be
achieved with a small number of inference steps; one just
needs to satisfy the proposed conditions properly.

Related Work
PC is an influential theory of cortical function in theoretical
and computational neuroscience, as it provides a computa-
tional framework, able to describe information processing in
multiple brain areas (Friston 2005). It has appealing theoret-
ical interpretations, such as free-energy minimization (Bo-
gacz 2017; Friston 2003, 2005) and variational inference of
probabilistic models (Whittington and Bogacz 2017). There
are also variants of PC developed into different biologically
plausible process theories specifying cortical microcircuits
that potentially implement such theories (Bastos et al. 2012;
Kanai et al. 2015; Shipp 2016). Moreover, the central role
of top-down predictions is consistent with the ubiquity and
importance of top-down diffuse connections between corti-
cal areas. PC is then consistent with many known aspects of
neurophysiology, and has been translated into biologically
plausible process theories which specify potential cortical
microcircuits which could implement the algorithm. Due to
this solid biological grounding, PC is also attracting interest
in machine learning recently, especially focusing on find-
ing the links between PC and BP (Whittington and Bogacz
2017).

Biologically plausible approximations to BP have been
intensively studied, because on the one hand, the underly-

ing principles of BP are unrealistic for an implementation in
the brain (Crick 1989; Lillicrap et al. 2016, 2020), but on the
other hand, BP outperforms all alternative discovered frame-
works (Baldi and Sadowski 2016). However, earlier biologi-
cally plausible approximations to BP have not been shown to
scale to complex problems, such as learning colored images
(Lillicrap et al. 2016; O’Reilly 1996; Körding and König
2001; Bengio 2014; Lee et al. 2015; Nøkland 2016; Scellier
and Bengio 2017; Scellier et al. 2018; Lin and Tang 2018;
Illing, Gerstner, and Brea 2019). More recent works show
the capacity of scaling up biologically plausible approxima-
tions to the level of BP (Xiao et al. 2018; Obeid, Ramam-
bason, and Pehlevan 2019; Nøkland and Eidnes 2019; Amit
2019; Aljadeff et al. 2019; Akrout et al. 2019; Wang, Lin,
and Dang 2020). However, to date, none of the earlier or re-
cent models has bridged the gaps at a degree of demonstrat-
ing an equivalence to BP, though some of them (Lee et al.
2015; Whittington and Bogacz 2017; Nøkland and Eidnes
2019; Ororbia et al. 2017; Millidge, Tschantz, and Buckley
2020) demonstrate that they approximate BP, or are equiv-
alent to BP under unrealistic restrictions (Xie and Seung
2003; Sacramento et al. 2018).

Summary and Outlook

The gap between machine learning and neuroscience is cur-
rently opening up: on the one hand, recent neural archi-
tectures trained by BP are invented with impressive per-
formance in machine learning; on the other hand, models
in neuroscience can only match the performance of BP in
small-scale problems. There is thus a crucial open question
of whether the advanced architectures in machine learning
are actually relevant for neuroscientists. In this paper, we
show that all these advanced architectures can be trained
with one of their neural models: the proposed generalization
of Z-IL is always equivalent to BP, with no extra restriction
on the mapping function and the type of neural networks.
(Previous works only showed that IL approximates BP in
single-step weight updates under unrealistic and non-trivial
requirements.) Also, the computational efficiency of Z-IL is
comparable to that of BP, and is several orders of magnitude
better than IL. Hence, we obtain a novel local and parallel
implementation of BP. Moreover, the novel formulation of
BP in terms of IL may inspire other neuroscience-based al-
ternatives to BP. The exploration of such alternatives to BP
are a topic of our ongoing research. Furthermore, our re-
sults show that deep-learning-based models may actually be
more closely related to information processing in the brain
than commonly thought, which may have a big impact on
both the machine learning and the neuroscience community.
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