
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Adversarial Caching Training: Unsupervised
Inductive Network Representation Learning on

Large-scale Graphs
Junyang Chen, Zhiguo Gong∗, Senior Member, IEEE, Wei Wang, Cong Wang∗, Zhenghua Xu, Jianming Lv,

Xueliang Li, Kaishun Wu, Weiwen Liu

Abstract—Network representation learning (NRL) has far-
reaching effects on data mining research, showing its importance
in many real-world applications. NRL, also known as network
embedding, aims at preserving graph structures in a low-
dimension space. These learned representations can be used for
subsequent machine learning tasks, such as vertex classification,
link prediction, and data visualization. Recently, graph convo-
lutional network (GCN) based models, e.g., GraphSAGE, have
drawn a lot of attention for their success in inductive NRL. When
conducting unsupervised learning on large-scale graphs, some of
these models employ negative sampling (NS) for optimization,
which encourages a target vertex to be close to its neighbors while
being far from its negative samples. However, NS draws negative
vertices through a random pattern or based on the degrees of
vertices. Thus, the generated samples could be either highly
relevant or completely unrelated to the target vertex. Moreover,
as the training goes, the gradient of NS objective calculated with
the inner product of the unrelated negative samples and the target
vertex may become zero, which will lead to learning inferior
representations. To address these problems, we propose an adver-
sarial training method tailored for unsupervised inductive NRL
on large networks. For efficiently keeping track of high-quality
negative samples, we design a caching scheme with sampling
and updating strategies that has a wide exploration of vertex
proximity while considering training costs. Besides, the proposed
method is adaptive to various existing GCN-based models without
significantly complicating their optimization process. Extensive
experiments show that our proposed method can achieve better

This work was supported in part by the National Key Development and
Research (D&R) Program of China under Grant 2019YFB1600704, in part
by The Science and Technology Development Fund, Macau SAR, under
Grant FDCT/0068/2020/AGJ and FDCT/0045/2019/A1, in part by Key-
Area Research and Development Program of Guangdong Province under
Grant 2019B111103001, in part by National Natural Science Foundation
of China under Grant (U2001207, 61872248, 61902249, 61876065), in part
by the Guangdong ”Pearl River Talent Recruitment Program” under Grant
2019ZT08X603. (Corresponding authors: Zhiguo Gong; Cong Wang.)

J. Chen, X. Li, and K. Wu are with the College of Computer Sci-
ence and Software Engineering, Shenzhen University, China. Email: jun-
yangchen@szu.edu.cn, lixueliangszu.edu.cn, wu@szu.edu.cn

Z. Gong is with State Key Laboratory of Internet of Things for Smart City,
Department of Computer Information Science, University of Macau, China,
fstzgg@um.edu.mo

W. Wang is with the School of Intelligent Systems Engineering, Sun Yat-sen
University, China. Email: wangw328@mail.sysu.edu.cn

C. Wang is with the Department of Computing, The Hong Kong Polytechnic
University, China. Email: supercong94@gmail.com

Z. Xu is with State Key Laboratory of Reliability and Intelligence
of Electrical Equipment, Hebei University of Technology, China. Email:
zhenghua.xu@hebut.edu.cn

J. Lv is the School of Computer Science and Engineering, South China
University of Technology, China. Email: jmlv@scut.edu.cn

W. Liu is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, China. Email: wwliu@cse.cuhk.edu.hk

Manuscript received 05/06/2020

performance compared with the state-of-the-art models.

Index Terms—Graph Neural Network, Adversarial Learning,
Network Embedding, Inductive Learning, Negative Sampling

I. INTRODUCTION

Graph structures, e.g., citation networks and social networks,
are ubiquitous and fast-growing in the real world. Network
representation learning (NRL) can map the semantic similarity
of graph vertices into a low-dimensional vector space where
the similar vertices are assigned to the nearby areas [1]. The
learned representations are useful for the subsequent applica-
tions, such as vertex classification [2], link prediction [3], and
data visualization [4]. As demonstrated in the above applica-
tions, more discriminative representations of vertices would
benefit for the better performance of the downstream tasks.
Thus, the key to the success of the downstream applications
is learning discriminative representations of vertices.

In general, current developments in NRL mostly fall into
two categories: transductive learning and inductive learning.
For example, DeepWalk [2], Line [5], Node2vec [3], and
GCN [6] are transductive models which require that all vertices
in networks are present during the training process of NRL.
Though these models can perform well in the training data,
they could not be generalized to unseen vertices. Notice that,
among them, GCN obtains a lot of attention for its firstly
proposing an efficient variant of convolutional neural networks
that can operate directly on graphs.

Therefore, inductive GCN-based learning models such as
GraphSAGE [7], GAT [8], and FastGCN [9] are recently
proposed to generate vertex embeddings for unseen vertices.
However, as stated by the authors, GAT is not suitable for
large-scale networks since its intense computation of attention
coefficients. Moreover, when applying these approaches to
fully unsupervised NRL, they may suffer from a gradient
vanishing problem during the optimization. Because in the un-
supervised setting, negative sampling (NS) [10] is an important
step in NRL, which encourages a target vertex to be close
to its neighbors while being far from its negative samples.
Nevertheless, NS draws negative vertices through a random
mode or based on the degrees of vertices, then, the generated
samples could be either highly relevant or completely unre-
lated to the target vertex (an example of using GraphSAGE
with NS is shown in Fig. 1). In addition, as training goes, the
gradient evaluated with the sampled unrelated negative vertices

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Aggregator1

1

2
Positive 1-hop

neighbors

Positive 2-hop
neighbors

Aggregator2

Target vertex

Negative vertex

1

2

1

2

(a) Original negative sampling (b) Proposed adversarial sampling

4

General neighbors

33

4 4

3

Fig. 1: When using GraphSAGE in unsupervised NRL, we can see that: (a) For the target vertex 1, vertex 2 and 3 may be generated as the
negative vertices by the original negative sampling method, whereas vertex pair (1, 2) is highly relevant and pair (1, 3) is totally unrelated;
(b) Our proposed adversarial sampling method can generate more appropriate negative sample such as vertex 4 in the above example. Note
that the details of the aggregators will be introduced in Section II-C.

may become zero, because these negative samples would be
far away from the target vertex in the embedding space and
the gradient calculated by activation functions (e.g., sigmoid
function) could be a very small number. As a result, the NRL
process will be stuck by the gradient vanishing problem which
leads to inferior representation learning.

In essence, the major problem of NS is that it models
negative samples with a fixed scheme which ignores the
dynamic changes of embedding features during the training.
Recently, generative adversarial networks (GAN) [11] and its
variants [12], [13] have shown promising ability to capture
complex distributions, which is a potential replacement of the
fixed scheme in NS. However, the integration of GAN and NS
is not seamless since keeping track of the dynamic negative
sample distribution for each vertex is inefficient.

To balance efficiency and effectiveness, in this paper, we
design an adversarial caching scheme with sampling and
updating strategies that has a wide exploration of vertex prox-
imity while considering training costs. Our proposed method,
called AdvCaching, is adaptive to the existing well-established
GCN-based models. We implement our idea by building
upon GraphSAGE for its popularity. The discriminator in
AdvCaching is trained to optimize the objective functions
of NRL as in the previous models. And the generator in it
can be regarded as an auxiliary which learns high-quality
negative samples and pushes the discriminator to its limit
in representation learning. Specifically, in initialization, we
randomly select negative samples into a cache. Then, we
use the combination of uniform sampling and probabilistic
updating strategies to maintain this cache during the training.
In general, our well-designed caching scheme can capture
the dynamic changes of high-quality negative samples, while
exploring as more the potentially negative ones as possible.
The main contributions of this paper can be summarized as
follows:

• We propose an adversarial training method, AdvCaching,

which is tailored for unsupervised inductive NRL on
large-scale graphs by building upon GraphSAGE. As a
principle, the proposed method also can be applied to
other GCN-based models.

• Specifically, we employ a discriminator which contains
the original neural network structure as GraphSAGE. And
we leverage a generator to make an effect of structure
distillation [14], which has fewer parameters compared
with the discriminator for modeling negative sample
distributions.

• To improve the tracking efficiency of the dynamic neg-
ative sample distribution for each vertex, we employ
the combination of uniform sampling and probabilistic
updating strategies to maintain a caching scheme for the
sample generation.

• We conduct extensive experiments on the subsequent
application tasks to evaluate the quality of the repre-
sentations learned by AdvCaching. Experimental results
show that our proposed method can achieve significant
and consistent improvements over state-of-the-art models.

The code and datasets will be released at the revision stage.
The rest of this paper is organized as follows. In Section II,
we firstly give preliminaries. In section III, we introduce the
core idea of our proposed model and present the AdvCaching
algorithm. We discuss experimental results in Section IV and
show the related work in Section V. Section VI concludes our
work.

II. PRELIMINARIES

In this section, we firstly give the problem formulation and
notations. Then, we will introduce the general idea of Graph-
SAGE which is selected as a base model for the proposed
AdvCaching.

A. Problem formulation and notations
In network representation learning (NRL) tasks, we denote a
network as G = (V,E), where V is the set of vertices and E ⊆

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

V ×V denotes the set of edges. For each vertex v ∈ V , NRL
aims to learn a low-dimensional embedding v ∈ Rd which
preserves the network proximity. Here d� |V | represents the
dimension of the representation space.

As mentioned before, classical NRL approaches based on
transductive learning cannot generalize to unseen vertices. To
perform inductive learning, models need to allow embeddings
to be efficiently generated for the unseen vertices. GraphSAGE
is one of the state-of-the-art models for inductive NRL, which
is introduced as follows.

B. The Objective of GraphSAGE in Unsupervised Inductive
NRL

As stated in GraphSAGE [7], the authors employ negative
sampling (NS) [10] to learn vertex representations in an
unsupervised setting. The objective function of GraphSAGE
is defined as follows:

J (vi) = −log(σ(vTp · vi))−
K∑
j=1

Evj∼PNS
log(σ(−vTj · vi)),

(1)
where vi is a target vertex, vp is its neighbor vertex (there is
an edge between them in datasets), σ is the sigmoid function,
i.e., σ(x) = 1/(1 + exp(−x)), PNS is a uniform negative
sampling distribution involving all vertices, vj is a negative
sample drawn from PNS , K is the number of negative samples
for the estimation, and the representations, i.e., vp, vi, and
vj, are aggregated from the features contained within their
local neighbors. The details of the aggregation methods will
be introduced in the following section. This objective aims to
encourage nearby vertices to have similar embeddings while
being distinct to their negative vertices.

C. Aggregation Methods in GraphSAGE

There are three aggregation methods in GraphSAGE including
mean aggregator, LSTM aggregator, and pooling aggrega-
tor [7]. For an illustration of integrating the proposed Adv-
Caching method into GraphSAGE, we use the mean aggregator
as an example, which is defined as follows:

vl ← σ(Wl · CONCAT(vl−1,MEAN({vl−1p ,∀vp ∈ N (v)}))),
(2)

where MEAN denotes the element-wise mean of the vectors,
CONCAT represents vector concatenation, Wl is the weight
matrices of layer l, vl is the embedding vector in layer l, σ
is the sigmoid function, and N (v) denotes the neighbors of
vertex v. From Eq. (2), we can see that GraphSAGE is able to
aggregate the neighbor representations of unseen vertices for
inductive learning.

III. PROPOSED ADVCACHING METHOD

In this section, we will present the core idea of the pro-
posed AdvCaching method by using GraphSAGE as the base
model (an overview of the training framework is shown in
Fig. 2), followed by detailed descriptions of its components.

A. AdvCaching GraphSAGE

As mentioned in the preliminaries, GraphSAGE adopts nega-
tive sampling (NS) in NRL but with fixed distributions. Specif-
ically, the original NS is based on a uniform distribution or
vertex degrees, thus the vertices with higher degrees are more
likely to be drawn as the negative samples [10]. Therefore,
NS cannot consider the dynamic changes of embeddings in
the training process and may encounter the gradient vanishing
problem. Recently, GAN’s technique [11] has shown promis-
ing capability in monitoring complex distributions, which is
a potential replacement of NS. In this paper, we leverage a
generator that can bring high-quality negative samples to the
discriminator for NRL. As shown in Figure 2, given the input
edges of the network, we firstly estimate their negative vertex
distributions with the generator. Then, we could sample high-
quality negative vertices with the designed caching scheme.
Finally, the discriminator performs representation learning.
Here we employ GraphSAGE as the base model in the
discriminator for illustration. The followings are the detailed
descriptions of AdvCaching components.

B. Generator in AdvCaching GraphSAGE

To leverage embedding features for obtaining high-quality
negative samples which can bring high gradient loss to the
discriminator, we exploit a generator G with softmax function
to model the negative candidate distribution, which is defined
as follows:

G(vj |vi; θG) =
exp(vi · vTj)∑

vj∈V exp(vi · vTj)
, (3)

where vi is the target vertex, vj is the negative candidate, V
denotes the whole set of vertices, and θG represents the union
of all vertex embeddings in the generator.

Aggregation of Negative Vertex Embedding. After com-
puting the above generator G, we can sample a negative vertex
vj ∼ G(vi; θG) as a substitute for vj ∼ PNS in Eq. (1),
where PNS denotes the original fixed distribution of negative
samples in NS and we use the generator G to replace PNS
for monitoring the dynamic changes of the negative sample
distribution. Then, the aggregate embedding of each negative
vertex vj in GraphSAGE can be further represented as follows:

vlj ← Mean-Aggregatel(vj), vj ∼ G(vi; θG), (4)

where Mean-Aggregatel(·) denotes the right part of Eq. (2). To
sum up, from Eq. (4) and Eq. (3), we can see that the generator
G can well consider the dynamic change of embedding fea-
tures and provide a concise connectivity distribution for each
target vertex. The softmax calculation is intuitive, however, the
summation term inside Eq. (3) is computationally inefficient
because it involves all vertices for each target vertex, especially
for real-world large-scale graphs that may contain millions of
vertices.

Generator Optimization. To address the aforementioned
problems, we employ a cache scheme for the softmax func-
tion. Then, the calculation space of the summation term in

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Generator

Cache	scheme

Discriminator

Reward

Target	vertex

Positive	1-hop
neighbors

Possible	negative
vertex

Positive	2-hop
neighbors

Fig. 2: An overview of the AdvCaching GraphSAGE framework. The generator aims to provide high-quality negative vertices by a well-
designed cache scheme and the reward from the discriminator. And the discriminator learns the vertex representations based on the edges
and the provided negative vertices.

Eq. (3) can be simplified to the caching space. Specifically,
the generator optimization Ĝ is formulated as follows:

Ĝ(vj |vi; θĜ) =
exp(vi · vTj)∑
vj∈C exp(vi · vTj)

, (5)

where C is the cache of vertices, generally |C| � |V | (The
details of the cache design will be introduced in the Caching
Scheme section), and vj is the negative vertex in C. Thus, the
summation term of Eq. (5) only takes the slight expense of
computation costs, reducing from |V | to |C|. Next, the loss
function of the generator can be defined as follows:

LĜ =
∑
vi∈B

Evj∼Ĝ(·|vi;θĜ)D(vi, vj ; θD), (6)

where B denotes a batch in the training process, vj rep-
resents the negative vertex, θD is the union of all vertex
embeddings in the discriminator, and D(·) indicates the dis-
criminator function (we define it as the sigmoid function,
i.e., D(vi, vj ; θD) = σ(vi · vTj) = 1/(1 + exp(−vi · vTj))).
Note that θD and θĜ denote the embedding vectors from the
discriminator and generator, respectively, where they do not
share the embeddings. In a nutshell, this formulated generator
aims to sample high-quality negative vertices, i.e., vj , from
the cache C with the softmax probability distribution, which
can prevent from generating totally unrelated vertices when
using the uniform sampling. However, the sampled output
of the generator is a discrete index of the cache. Therefore,
the stochastic gradient descent (SGD) method can not be
directly used for optimization. According to [15], [16], we can
use a policy gradient-based reinforcement learning method to
optimize the generator loss as follows:

∇θĜLĜ
= ∇θĜ

∑
vi∈B

Evj∼Ĝ(·|vi;θĜ)D(vi, vj ; θD)

=
∑
vi∈B

Evj∼Ĝ(·|vi;θĜ)D(vi, vj ; θD)∇θĜ logĜ(vj |vi; θĜ),

(7)

where the gradient of LĜ is an expected summation of ∇θĜ log
Ĝ(cn|vt; θĜ) weighted by D(·) which is calculated with the
discriminator. In the field of reinforcement learning, D(·) in
Eq. (7) can be regarded as a reward function and the generator
is trained to maximize the expected reward. In order to achieve
a higher reward, for each negative pair (vi, vj), the policy
used by the generator network would punish trivial negative
vertices by lowering down their corresponding probability and
encourage the discriminator network to distribute high-quality
negative vertices, i.e., pair (vi, vj) with higher similarity from
the discriminator parameterized by θD will be encouraged to
be generated. Moreover, in practice, the reinforcement-based
algorithms may suffer from unstable performance and receive
high variance results [17]. According to [18], this problem can
be alleviated by adding a baseline function to the reward term
in the gradient loss. Then, D(·) can be replaced by:

D(vi, vj ; θD) +

∑
B∈P

∑
vi∈B Evj∼Ĝ(·|vi;θĜ)D(vi, vj ; θD)

|P|
,

(8)
where P denotes the whole batches in an epoch, and the
baseline function is the average reward of epochs obtained
in the training process.

C. Discriminator in AdvCaching GraphSAGE
The discriminator of our proposed AdvCaching GraphSAGE
aims to perform unsupervised inductive NRL with the high-
quality negative samples constructed by the generator Ĝ. The
objective function of D is formulated as follows:

LD =
∑
vi∈B

[−logD(vi, vp; θD)

−
K∑
j=1

Evj∼Ĝ(·|vi;θĜ)log(D(−vi, vj ; θD))

+ λ(||vp||2F + ||vi||2F + ||vj ||2F)]

(9)

where B denotes a batch in the training process, vp denotes
the adjacent vertex of vi, vj is the negative vertex sampled by
using Eq. (5), ||·||F is Frobenius norm of vectors, {vp,vi,vj}

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

are the embedding vectors in θD, and λ is a harmonic factor
for regularization (we set it as 1e-5 in experiments). The
discriminator D can be optimized with the gradient descent
technique. An important distinction between this objective
function and the original one as shown in Eq. (1) is that the
negative vertex vj is sampled from the cache with softmax
function, instead of the uniform sampling. We can see that our
proposed method is adaptive to the GraphSAGE model without
significantly complicating its optimization process. Moreover,
as a principle, our method also can be extended to other GCN-
based models. We leave this discussion in Section III-F.

D. Minimax Form of the Final Loss

Without loss of generality, we provide the minimax form of
our method as follows:

min
θĜ

max
θD

V (G,D) =
∑
vi∈B

(
logD(vi, vp; θD)

+

K∑
j=1

Evj∼Ĝ(·|vi;θĜ)log(1−D(vi, vj ; θD))

)
,

(10)

where G and D are playing a minimax game presented
with value function V (G,D). In general, generator G and
discriminator D act as two opponents: (1) Generator G would
try to generate high-quality negative samples that are similar
to the target vertex vi’s real immediate neighbors to deceive
discriminator D; (2) On the contrary, discriminator D would
try to be far from these generated negative samples.

E. Caching Scheme

As mentioned before, though GAN’s technique can monitor
a complex generation process, it is inefficient to keep track
of the dynamic negative sample distribution for each vertex.
As shown in Eq. (5), we are motivated to cache high-quality
negative samples with large probabilities. In this way, we can
efficiently track the dynamic changes of embedding features
while exploring as more vertices as possible.

The overall training process of our proposed method with
the caching scheme is shown in Algorithm 1. To begin with,
we give the following notations.

Embedded cache C1. We employ a cache C1 ∈ R|V |×N1

to store candidate negative samples, where |V | denotes the
number of vertices, N1 is the cache size, and N1 � |V |. Note
that we represent C1 as the embedded cache because it has
stationary memory costs during the training.

Temporary cache C2. We use a temporary cache C2 ∈
R|B|×N2 to store the re-sampling vertices, where |B| is the
batch size, N2 represents the re-sample size, and N2 � |V |.
We can reuse the same temporary cache during the batch
processing for space-saving.

In order to achieve the best performance, we need to well
define sampling and updating strategies (step 9 and step 11 in
Algorithm 1), which aims to have a wide exploration of vertex
proximity while considering training costs. The details are as
follows.

Uniformly Re-sampling Strategy (step 9). This strategy
considers efficiency and aims to explore as more potential

Algorithm 1: Training Process of AdvCaching
Input: Graph G = (V,E), batch size |B|, emebding

dimension d, embedded cache C1, temporary
cache C2

Result: Parameters of Discriminator θD and Generator
θĜ

1 begin
2 Initialize θD, θG, and the cache of negative

samples C1 randomly;
3 while not converge do
4 Sample a batch B from the edges of vertices;
5 Initialize the temporary cache C2;
6 for G-steps do
7 for each edge (vi, vp) ∈ B do
8 Index the cache C1 to get the candidate

negative samples C1(vi);
9 Index the cache C2 and uniformly

re-sampling candidates from the whole
set of vertices V into the cache
C2(vi);

10 Use Ĝ to sample quality negative vertex
vj from the cache set
C ←− {C1(vi), C2(vi)} according to
Eq. (5);

11 Sample a new candidate negative cache
from C with probabilities calculated
by Eq. (5) to update C1(vi);

12 end
13 Update the parameters of θĜ via policy

gradient in Eq. (7);
14 end
15 for D-steps do
16 For each edge (vi, vp) in batch B and the

sampled negative vertex vj , calculate D
loss using Eq. (9);

17 Update the parameters of θD via gradient
descent;

18 end
19 end
20 end

negative vertices as possible. As the embedding features are
changing in the training process, the negative vertices in the
cache C1 will be outdated and not accurate. Thus, we need
to explore more possible vertices to update the cache. This
motivates us to adopt a uniform sampler which is a simple and
efficient way to re-sample the candidate negative vertices of
the network. The time complexity is O(1). Besides, it is worth
mentioning that we also avoid selecting the direct neighbors
of vertices when constructing their re-sampling cache C2.
Because it is unlikely that there is an edge between two
vertices but they are not related to each other.

Probabilistic Updating Strategy (step 11). This strategy
aims to dynamically update the embedded cache C1 during
the iterations. As the training goes, the gradient loss of Eq. (9)
may become zero if we fix the cache. To avoid the gradient
vanishing problem and obtain high-quality negative samples,
we draw vertices from the united cache C following the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

probability calculated by Eq. (5), where C = {C1(vi), C2(vi)}
and a higher probability means more relevance of the vertex
pair. Then, C1 can be updated with the sampled vertices.

In summary, we exploit the above strategies to balance the
efficiency and the effectiveness of modeling negative sample
distributions. A larger size N2 of the cache C2 means explor-
ing more potential negative vertices from the network. And the
uniform sampler is employed for its efficiency. In addition, a
bigger size N1 of the cache C1 implies keeping track of more
negative vertices. And the cache with the probabilistic update
is adopted for its effectiveness. Besides, since our method is an
extension for other GCN-based models, the time complexity
of our method is on par with them with addition computation
O(|V |(N1 +N2)d), where d is the embedding dimension.

Till now, we have introduced the training process of Adv-
caching and its components as shown in Figure 2. Moreover,
as a principle, our method also can be extended to other
GCN-based models without significantly complicating their
optimization processes. The details will be discussed in the
next section.

F. Models Extended by AdvCaching
In this part, we firstly elaborate on the principle of building
AdvCaching on GraphSAGE. Then, we show how to apply
AdvCaching to extend other GCN-based models.

As mentioned before, all of the GCN-based models includ-
ing GraphSAGE utilize negative sampling (NS) [10] for the
optimization in NRL. The major idea of Advcaching is to
replace NS with a defined cache scheme. Specifically, the
proposed generator can embed this cache seamlessly while
the discriminator completes NRL tasks with the base models.
Moreover, this generator has fewer parameters compared with
the discriminator. For example, GraphSAGE contains multiple
layers and has complicated forward propagation algorithms,
i.e., mean aggregator, LSTM aggregator, and pooling aggre-
gator [7]. We can generalize GraphSAGE to a discriminator
which contains the original complex neural network structure.
In the meantime, we use a generator to model negative vertex
distributions with only one layer for structure distillation [14].

Note that the main difference between GraphSAGE and
other GCN-based models is the aggregator definition. For
instance, GCN [6] adopts a localized spectral convolutional
aggregator which is defined as follows:

vl ← σ(Wl ·MEAN({vl−1} ∪ {vl−1p ,∀vp ∈ N (v)})),
(11)

where the variable meanings are the same as Eq. (2).
We denote the right part of the above equation as
GCN-Aggregatel(·). Then, the aggregate embedding of each
negative candidate vertex vj in GCN can be further represented
as follows:

vlj ← GCN-Aggregatel(vj), vj ∼ Ĝ(vi; θĜ), (12)

where vj ∼ Ĝ(vi; θĜ) represents that we use the proposed
generator Ĝ to sample negative vertices instead of the uniform
sampling adopted in the original GCN. Besides, follow the
same principle, more base models such as GAT [8] also can
be easily extended with the above generator.

TABLE I: Statistics of datasets

Datasets # of vertices |V | # of edges |E| # of labels |L|
Cora 2708 5278 7

Citeseer 3264 4551 6
Wiki 2363 11596 17

DBLP C4 17725 52914 4

IV. EXPERIMENTS

In the experiments, we evaluate the performance of our pro-
posed method in terms of vertex classification tasks on four
real-life networks. Moreover, we also investigate the parameter
influence on these tasks.

A. Datasets

We conduct experiments on four widely used network datasets
with the statistics listed in Table I, where L denotes the label
set.

Cora1 is a research citation network constructed by [19]. It
contains 2708 machine learning papers with 7 labels.

Citeseer2 is another extensively adopted research paper set
which contains 3264 publications and 6 labels.

Wiki3 is a language network that contains 2363 web pages
and 17 labels after preprocessing by deleting self-loops and
nodes with zero degrees.

DBLP C44 consists of bibliography data in computer sci-
ence constructed by [20]. In the experiments, we select a list
of conference papers from 4 research fields: database, data
mining, AI, and CV.

To comprehensively evaluate the performance of models,
we conduct experiments on these datasets with or without
their nodes attributes. Specifically, on the Cora and Citeseer
datasets, we perform representation learning on the graph
adjacency with node features. For the Wiki and DBLP datasets,
we are only focused on connectivity patterns in networks.
One reason is that, in real-life scenarios, graphs without node
attributes are more common and easy to acquire. We also want
to evaluate the performance of GCN-based models on pure
graph adjacency.

B. Baseline Models

We employ several state-of-the-art GCN-based models as the
baselines, including GCN, GraphSAGE, and GAT. There are
many other NRL methods but we do not consider them
here, because either their performances are inferior to these
baselines as shown in corresponding papers or they are trans-
ductive models that are inappropriate for inductive NRL. The
descriptions of the baseline models are as follows:

GCN [6] firstly introduces an effective variant of convo-
lutional neural networks that can operate directly on graphs.
For inductive learning on large-scale networks, an improved
version of the GCN approach [7] is derived. We employ this
variant for comparison.

1https://people.cs.umass.edu/∼mccallum/data.html
2https://github.com/wonniu/AdvT4NE WWW2019
3https://github.com/albertyang33/TADW
4http://arnetminer.org/citation (V4 version is used)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

GraphSAGE [7] proposes an inductive manner for com-
puting vertex representations, which has yielded impressive
performance on several large-scale benchmarks. For each
vertex, GraphSAGE firstly samples fixed-size neighbors and
then performs an aggregate function over them to obtain the
vertex representations. There are four types of aggregate func-
tions including GraphSAGE-mean, GraphSAGE-LSTM,
GraphSAGE-maxpool, and GraphSAGE-meanpool (a vari-
ant of the maxpool aggregator, where the element-wise mean-
pooling replaces the element-wise max-pooling). One main
difference between “meanpool” and “mean” is that “mean-
pool” needs each neighbor’s vector to be independently fed
trough a fully-connected neural network.

GAT [8] leverages self-attentional layers to learn the im-
portance weights of centered nodes’ neighbors.

As mentioned before, we implement the proposed Adv-
Caching method by using GraphSAGE as the base model.
We denote the improved variants according to the aggregate
functions as follows: AdvCaching-GCN, AdvCaching-mean,
AdvCaching-LSTM, AdvCaching-maxpool, AdvCaching-
meanpool, and AdvCaching-GAT.

C. Parameter Settings and Evaluation Metrics

We follow the experiment setup in [7] to demonstrate the
effectiveness of our proposed method. Specifically, for the
discriminator of AdvCaching, we follow GraphSAGE [7] by
setting the number of network layers l = 2, the hidden
dimension d = 128, and the neighborhood sample sizes of
layers S1 = 25 and S2 = 10, respectively. For the generator of
AdvCaching, we set l = 1, d = 128, and use Adam optimizer
[21] with the initial learning rate 1e-3. For the cache size,
we uniformly set N1 = N2 = 10. Besides, we adopt vertex
classification as the benchmark task for evaluating the learned
representations: using Liblinear package [22] with default
settings to build the classifier and employing classification
accuracy [4] as the metrics.

D. Vertex Classification

In this section, we conduct downstream multi-class classi-
fication tasks on four benchmark datasets, including Cora,
Citeseer, Wiki and DBLP C4, with the training ratios ranging
from 10% to 90%. We build the classifier using Liblinear
package [22] with its default setting. From Table II, III, IV,
and V, we have the following observations.

The proposed AdvCaching method, built upon GraphSAGE
with adversarial learning components, consistently outper-
forms both GCN and the variants of GraphSAGE on four
datasets across all training ratios, only with some exceptions in
Wiki when the ratios are 10% and 20%. More specifically, the
variants of AdvCaching achieve 5.9%, 9.6%, 7.2%, and 6.5%
performance gains over the variants of GraphSAGE on average
of ratios in Cora, Citeseer, Wiki and DBLP C4 respectively,
while the accuracy improvements of AdvCaching-GCN over
GCN are 3.2%, 4.2%, 7.4%, and 5.2% respectively. In general,
the experimental results validate that AdvCaching can obtain
benefits from the high-quality negative samples generated by
the proposed adversarial training framework. And this also

confirms that our designed caching scheme can keep track
well of these negative sample generations. Combined with Sec-
tion III-F, we can summarize that the proposed AdvCaching
method can produce positive results on GCN-based models in
two aspects: making better performance contributions and less
complicating the optimization process of the original models.

E. Convergence Analysis

In this part, we perform the convergence analysis of models.
Fig. 3 shows the influence of epochs on the loss of algorithms
during the pre-training. We report the performance of GAT,
GCN, GraphSAGE-mean, and our proposed models on Cora,
Citeseer, Wiki, and DBLP C4 respectively. From Fig. 3, we
can see that most of the models obtain dismissing loss after
25 epochs and all models achieve convergence at or before the
40th epoch. Note that we use the converged node embeddings
in the above evaluation of vertex classification. Besides, the
values of the pre-training loss would not be directly related
to the downstream classification performance, because the
embeddings of models may be over-smooth and thus can
obtain smaller pre-training loss.

F. Execution Time and Classification Performance Analysis

To perform an ablation study, we make a comparison of
methods in terms of execution time and classification accuracy
on Cora, Citeseer, Wiki, and DBLP, respectively. Specifically,
we compare GAT, GCN, and GraphSAGE-mean with our
proposed methods with and without caching scheme, as shown
in Fig. 4, 5, 6, and 7. Generally, the average execution time of
our methods is 2.18, 2.37, 2.82, and 2.79 times comparing with
the original methods on four datasets, respectively. In contrast,
the proposed methods w/o caching scheme are 101, 131, 143,
and 150 times over the original ones, which demonstrates the
effectiveness of the caching design that can obtain competitive
execution time compared with the original networks. More-
over, we can observe the accuracy performance of our methods
can achieve 4.81%, 2.76%, 6.42%, and 4.16% improvements
over the original methods, respectively, while the methods
without caching scheme drop by 2.81%, 3.07%, 2.74%, and
6.12% of accuracy comparing with the original ones. We
conjecture that the reason of performance degradation for
methods without caching is that computing all vertices for
generating negative samples at each step is time-consuming
and more likely to fall into the local optimum. In general, our
method makes improvements over previous methods coming
at an acceptable computational cost.

G. Parameter Sensitivity

Fig. 8 shows the influence of the cache size on the accuracy
and runtime performances of our proposed method. Here
we adopt AdvCaching-mean on the Citeseer dataset for the
evaluation of the parameter influence. First, as shown in
Fig. 8a, we let the embedded cache size N1 equal to the
temporary cache size N2. From this figure, we can observe
that the runtime of the proposed method is approximately

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE II: Accuracy (%) of vertex classification on Cora

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 63.00 68.57 70.31 70.03 71.42 71.49 71.46 71.40 73.43

AdvCaching-GAT 67.43 73.60 76.42 75.69 77.18 78.14 79.34 78.69 78.97
GCN 72.44 76.37 77.00 77.54 78.29 79.24 80.07 78.41 77.86

AdvCaching-GCN 75.64 77.99 78.01 78.09 78.73 79.15 80.44 78.78 79.34
GraphSAGE-mean 42.53 48.78 52.11 52.12 55.02 56.18 56.95 57.56 54.98
AdvCaching-mean 45.82 50.76 53.11 55.32 57.53 59.41 60.76 60.15 56.83
GraphSAGE-LSTM 68.17 73.56 74.95 74.52 75.63 76.94 78.97 78.41 76.75
AdvCaching-LSTM 71.21 76.42 77.43 77.05 78.06 78.69 79.95 79.15 79.70
GraphSAGE-maxpool 65.30 69.87 71.52 71.32 71.71 73.43 73.68 72.69 69.37
AdvCaching-maxpool 67.39 71.34 73.31 72.62 75.04 74.82 75.40 75.65 69.74
GraphSAGE-meanpool 68.46 71.34 73.05 72.68 74.52 75.83 77.49 77.31 74.17
AdvCaching-meanpool 75.80 78.50 79.32 79.08 80.28 81.37 82.66 82.29 81.92

TABLE III: Accuracy (%) of vertex classification on Citeseer

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 61.82 63.02 65.11 65.85 66.49 67.47 66.60 64.71 63.86

AdvCaching-GAT 62.16 63.81 64.90 66.70 67.27 66.87 66.90 66.82 66.87
GCN 63.50 65.25 66.32 67.30 67.21 67.77 68.71 69.23 68.07

AdvCaching-GCN 65.65 67.51 68.69 69.52 70.23 70.79 71.53 70.44 68.67
GraphSAGE-mean 42.17 47.47 51.70 53.52 55.13 54.87 56.54 54.75 53.31
AdvCaching-mean 45.05 49.13 51.92 54.83 55.80 55.85 58.45 58.97 58.13
GraphSAGE-LSTM 64.84 65.43 66.71 67.35 67.93 67.70 68.71 68.48 68.37
AdvCaching-LSTM 65.95 67.06 68.35 69.16 69.63 69.43 70.42 69.68 69.88
GraphSAGE-maxpool 62.86 64.49 65.20 65.69 66.91 67.09 67.91 67.57 67.17
AdvCaching-maxpool 64.51 66.26 66.93 67.35 68.96 69.21 68.91 68.17 69.78
GraphSAGE-meanpool 62.70 65.43 66.93 66.75 66.67 66.79 67.51 67.57 67.77
AdvCaching-meanpool 63.17 66.79 67.53 67.96 68.18 68.98 70.22 69.83 68.37

TABLE IV: Accuracy (%) of vertex classification on Wiki

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 49.46 52.35 53.23 54.65 54.74 55.92 56.14 53.91 51.90

AdvCaching-GAT 50.54 53.73 55.23 56.21 56.68 57.61 58.25 56.03 56.12
GCN 35.06 40.23 41.92 41.44 42.56 43.35 44.18 42.62 37.34

AdvCaching-GCN 35.47 41.84 43.17 43.80 45.64 46.88 46.26 46.57 46.47
GraphSAGE-mean 27.86 31.39 32.30 32.64 34.33 34.20 34.35 34.10 28.22
AdvCaching-mean 28.36 33.21 35.33 35.62 36.24 36.49 38.37 37.01 36.51
GraphSAGE-LSTM 42.08 46.05 47.03 46.99 49.38 49.58 48.48 45.95 44.39
AdvCaching-LSTM 39.68 46.31 48.28 48.99 51.70 52.81 53.60 53.85 50.62
GraphSAGE-maxpool 25.81 29.09 31.12 31.45 31.90 31.92 33.15 31.08 32.49
AdvCaching-maxpool 27.32 28.93 31.48 32.37 32.66 35.73 35.12 31.92 36.29
GraphSAGE-meanpool 42.17 44.43 45.37 45.88 47.05 46.78 47.78 45.74 43.98
AdvCaching-meanpool 42.03 48.49 49.29 49.27 49.88 51.66 52.91 51.35 47.30

linear to the cache size. Meanwhile, the accuracy performance
fluctuates along with the increase of the cache size and reach
the bottom when N1 = N2 = 30. Then, we vary the cache
size N1 or N2 given N2 = 10 or N1 = 10 to further evaluate
the accuracy performance of cache size, as shown in Fig. 8b.
The performance lines are normally stable. In general, our

model is generally robust to the cache size settings. Moreover,
we try to evaluate how continuously changing N1 or N2 will
influence the final accuracy. As shown in Fig. 8c, we take
both N1 and N2 as the axes by varying their numbers in
{10, 15, 20, 25, 30}. We can observe that the proposed method
achieves the best classification performance when N1 = 20

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE V: Accuracy (%) of vertex classification on DBLP C4

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 72.37 73.18 73.79 73.72 73.81 73.54 73.69 73.29 73.15

AdvCaching-GAT 72.65 73.42 73.94 74.29 74.38 74.51 74.76 74.19 74.56
GCN 64.04 65.07 65.80 65.94 66.25 66.32 66.90 66.40 65.09

AdvCaching-GCN 67.81 68.60 69.12 69.39 69.49 69.15 69.50 69.59 69.66
GraphSAGE-mean 59.56 60.28 60.71 61.04 61.16 60.82 61.72 61.75 62.44
AdvCaching-mean 64.48 64.62 65.10 65.34 65.35 65.37 65.64 65.84 65.99
GraphSAGE-LSTM 63.62 64.55 65.13 65.49 65.47 65.20 65.55 64.82 64.02
AdvCaching-LSTM 66.24 66.97 67.89 68.23 68.35 68.18 68.47 68.58 68.98
GraphSAGE-maxpool 64.16 64.24 64.69 65.00 64.99 64.72 65.25 65.08 64.69
AdvCaching-maxpool 66.41 66.61 67.02 67.55 67.48 67.56 67.83 67.87 68.13
GraphSAGE-meanpool 62.38 62.79 63.14 63.68 63.79 63.61 63.86 63.92 63.23
AdvCaching-meanpool 68.17 69.13 69.59 69.92 70.19 70.23 70.61 70.13 70.16

0 5 10 15 20 25 30 35 40
Epoch

4.0

4.5

5.0

5.5

6.0

Lo
ss

GAT
AdvCaching-GAT
GCN
AdvCaching-GCN
GraphSAGE-mean
AdvCaching-mean

(a) Cora

0 5 10 15 20 25 30 35 40
Epoch

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

Lo
ss

GAT
AdvCaching-GAT
GCN
AdvCaching-GCN
GraphSAGE-mean
AdvCaching-mean

(b) Citeseer

0 5 10 15 20 25 30 35 40
Epoch

4.0

4.2

4.4

4.6

4.8

5.0

Lo
ss

GAT
AdvCaching-GAT
GCN
AdvCaching-GCN
GraphSAGE-mean
AdvCaching-mean

(c) Wiki

0 5 10 15 20 25 30 35 40
Epoch

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

Lo
ss

GAT
AdvCaching-GAT
GCN
AdvCaching-GCN
GraphSAGE-mean
AdvCaching-mean

(d) DBLP C4

Fig. 3: Convergence analysis. We report the performance of GAT, GCN, GraphSAGE-mean, and our proposed models on Cora, Citeseer,
Wiki, and DBLP C4, respectively. In general, all models achieve convergence before 40 epochs.

0 20 40 60 80 100 120 140 160 180 200

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Time(s)

50 55 60 65 70 75 80

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Accuracy(%)

Fig. 4: Ablation study of methods in terms of execution time and classification accuracy on Cora dataset.

0 50 100 150 200 250 300 350 400 450 500

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Time(s)

45 50 55 60 65 70

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Accuracy(%)

Fig. 5: Ablation study of methods in terms of execution time and classification accuracy on Citeseer dataset.

and N2 = 15.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

-50 150 350 550 750 950 1150

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Time(s)

20 25 30 35 40 45 50 55 60

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Accuracy(%)

Fig. 6: Ablation study of methods in terms of execution time and classification accuracy on Wiki dataset.

0 1000 2000 3000 4000 5000 6000

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Time(s)

40 45 50 55 60 65 70 75

AdvCaching-GAT w/o caching

AdvCaching-GAT

GAT

AdvCaching-GCN w/o caching

AdvCaching-GCN

GCN

AdvCaching-mean w/o caching

AdvCaching-mean

GraphSAGE-mean

Accuracy(%)

Fig. 7: Ablation study of methods in terms of execution time and classification accuracy on DBLP C4 dataset.

10 15 20 25 30 35
Cache size

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

(%
)

Runtime
Accuracy

5

10

15

20

25

30

35

Ru
nt

im
e(

s)

(a) Accuracy and runtime performance

10 15 20 25 30 35
Cache size

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(%
)

N1
N2

(b) Varying cache size N1 or N2.

10

15

20

25

30

35

0.5

0.51

0.52

0.53

0.54

0.55

0.56

10
15

20

25

30

35

N2

A
cc
u
ra
cy
(%

)

N1

(c) Classification performance of N1 and N2 grid.

Fig. 8: Here we use AdvCaching-mean on the Citeseer dataset for the evaluation of parameter influence. (a) Accuracy and runtime performance
with respect to the cache size. Here we set N1 = N2 and report its average classification performance with training ratios from 10% to 90%;
(b) We vary N1 or N2 given N2 = 10 or N1 = 10 to evaluate the classification accuracy in terms of cache sizes; (3) We take both N1 and
N2 as axes by continuously varying their numbers in {10, 15, 20, 25, 30} to evaluate how they influence the final classification accuracy.

V. RELATED WORK

Since we propose an adversarial caching training for in-
corporating GCN-based models into network representation
learning, our work is related to the following three aspects:

Network Representation Learning (NRL), i.e., net-
work embedding, learns to represent graph vertices in low-
dimensional vectors. Following the success of word embed-
ding [10], DeepWalk [2] is proposed to perform representation
learning by applying SkipGram model [10] on the gener-
ated random walks. Subsequent improved algorithms such
as LINE [5], Node2vec [3], and PolyDeepwalk [23] also
achieve breakthroughs. However, these methods suffer from
computational inefficiency because no parameters are shared
between nodes in the encoder [24]. Besides, they only focus on

learning representation from the local connectivity of vertices
(i.e., neighbors) but ignore the vertex information propagation
guided by the graph structure.

Graph Neural Networks (GNNs) motivated by CNNs [25]
are proposed to collectively aggregate information from graph
structures. In recent years, models such as graph convolutional
network (GCN) [6] and its variant graph attention network
(GAT) [8], have shown ground-breaking performance on many
tasks including NRL. Compared with the previous models [2],
[5], [3] mentioned before, GCN can jointly consider the
local connectivity and global consistency on graphs. Based on
the fundamental theory of GCN, more variants are proposed
including GraphSAGE [7], FastGCN [9], DGCN [26], and
HAN [27]. Among them, PinSage [28] incorporates Graph-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

SAGE and achieve the largest application of deep graph
embeddings, which paves the way for a new generation of
web-scale recommender systems. Our proposed method can
be applied to GraphSAGE and achieve better performances in
NRL as shown in the experiments, which demonstrate that
our work is worth investigating. Note that there are many
other fancy graph-based models such as [29], [30] but we do
not consider them here, because these models do not adopt
negative sampling for unsupervised representation learning.

Generative Adversarial Network (GAN) [11] recently
draws a lot of attention for its promising performances in
various applications [31]. For example, KBGAN [12] and
IGAN [13] propose to incorporate GAN for negative sampling
in knowledge graph learning. Then, NSCaching [32] further
proposes an efficient method to improve its sampling way. Our
work is inspired by these models but with notable differences.
The essential distinction is that the assumption of NRL,
that two connected vertices should be similar and close in
embedding space, does not hold in the knowledge graph. In
general, to the best of our knowledge, there is no practice
of incorporating adversarial training of modeling negative
samples into GCN for network representation learning.

VI. CONCLUSION

In this paper, we propose an adversarial training method,
called AdvCaching, for unsupervised inductive NRL on large-
scale networks. Though GCN and its variants show effective
performance in NRL, they may suffer from a gradient van-
ishing problem when adopting the negative sampling method
for optimization. Instead of generating negative vertices from
a uniform sampler, we want to keep track of the dynamic
negative sample distributions by leveraging GAN. Specifically,
in AdvCaching, we adopt a discriminator that contains original
complex neural networks of the base models, and use a genera-
tor that has fewer parameters compared with the discriminator
to model negative sample distributions. To balance efficiency
and effectiveness, we further design an adversarial caching
scheme with sampling and updating strategies that has a wide
exploration of vertex connectivity while considering training
costs. Besides, since GraphSAGE achieves great success in
practical applications, we present the core idea of our work
by using it as the base model. As a principle, AdvCaching
also can be applied to extend other GCN-based models. Ex-
periments on real-world datasets demonstrate that AdvCaching
can achieve significant improvements over the state-of-the-
art models, which validates the effectiveness of our proposed
method.

REFERENCES

[1] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 5,
pp. 833–852, 2018.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[3] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[4] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embedding,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[7] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[9] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[12] L. Cai and W. Y. Wang, “Kbgan: Adversarial learning for knowledge
graph embeddings,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), 2018, pp.
1470–1480.

[13] P. Wang, S. Li, and R. Pan, “Incorporating gan for negative sampling in
knowledge representation learning,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[14] X. Wang, R. Zhang, Y. Sun, and J. Qi, “Kdgan: knowledge distillation
with generative adversarial networks,” in Advances in Neural Informa-
tion Processing Systems, 2018, pp. 775–786.

[15] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation
using stochastic computation graphs,” in Advances in Neural Information
Processing Systems, 2015, pp. 3528–3536.

[16] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[17] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[18] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[19] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[20] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 990–998.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of machine
learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[23] N. Liu, Q. Tan, Y. Li, H. Yang, J. Zhou, and X. Hu, “Is a single
vector enough? exploring node polysemy for network embedding,” arXiv
preprint arXiv:1905.10668, 2019.

[24] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[26] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in Proceedings of the 2018 World
Wide Web Conference, 2018, pp. 499–508.

[27] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

[28] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[29] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi, “Graph neural net-
works with convolutional arma filters,” arXiv preprint arXiv:1901.01343,
2019.

[30] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” arXiv preprint
arXiv:1810.05997, 2018.

[31] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks: A
survey and taxonomy,” arXiv preprint arXiv:1906.01529, 2019.

[32] Y. Zhang, Q. Yao, Y. Shao, and L. Chen, “Nscaching: simple and
efficient negative sampling for knowledge graph embedding,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019, pp. 614–625.

Junyang Chen is currently an Assistant Professor
with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, China. He
received a Ph.D. degree in computer and information
science from University of Macau, Macau, China,
in 2020. His research interests include graph neural
networks, text mining, and recommender systems.

Zhiguo Gong received the Ph.D. degree in computer
science from the Institute of Mathematics, Chinese
Academy of Science, Beijing, China. He is currently
a Professor with the Faculty of Science and Tech-
nology, University of Macau, Macau, China. His
current research interests include machine learning,
data mining, database, and information retrieval.

Wei Wang is currently an Associate Professor with
School of Intelligent Systems Engineering, Sun Yat-
sen University, China. He received PhD degree
in software engineering from Dalian University of
Technology in 2018. His research interests include
computational social science, data mining, internet
of things, and artificial intelligence.

Cong Wang is currently a Ph.D. student at the De-
partment of Computing of The Hong Kong Polytech-
nic University. He received the Master’s Degree in
Computational Mathematics from Dalian University
of Technology in 2020 and the Bachelor’s Degree in
Mathematics and Applied Mathematics from Inner
Mongolia University in 2017. His research interests
are computer vision and deep learning.

Zhenghua Xu received a M.Phil. in Computer Sci-
ence from The University of Melbourne, Australia,
in 2012, and a D.Phil in computer Science from Uni-
versity of Oxford, United Kingdom, in 2018. From
2017 to 2018, he worked as a research associate
at the Department of Computer Science, University
of Oxford. He is now a Professor at the Hebei
University of Technology, China, and a awardee of
“100 Talents Plan” of Hebei Province.

Jianming Lv received the B.S. degree in computer
science from Sun Yat-sen University, China, in 2002,
and the Ph.D. degree from the Institute of Com-
puting Technology, University of Chinese Academy
of Sciences, in 2008. He is currently a Professor
with the South China University of Technology.
His research interests include data mining, computer
vision, and distributed computing.

Xueliang Li is now working at Shenzhen University
as a research fellow. He received his Bachelor of
Engineering in Nanchang University, China, 2006.
He continued his study in Chinese Academy of
Sciences and complete Master of Computer Science
in 2013. He achieved his PhD degree in computer
science from Roskilde University, Denmark, 2017.

Kaishun Wu received the Ph.D. degree in Depart-
ment of Computer Science and Engineering,Hong
Kong University of Science and Technology, in
2011. He is currently a distinguished professor in
the College of Computer Science and Software En-
gineering, Shenzhen University, China.

Weiwen Liu received the B.S. degree in computer
science from South China University and Technol-
ogy, Guangzhou, China, in 2016, and the Ph.D.
degree in computer science from The Chinese Uni-
versity of Hong Kong, Hong Kong, in 2020.

	Introduction
	Preliminaries
	Problem formulation and notations
	The Objective of GraphSAGE in Unsupervised Inductive NRL
	Aggregation Methods in GraphSAGE

	Proposed AdvCaching Method
	AdvCaching GraphSAGE
	Generator in AdvCaching GraphSAGE
	Discriminator in AdvCaching GraphSAGE
	Minimax Form of the Final Loss
	Caching Scheme
	Models Extended by AdvCaching

	Experiments
	Datasets
	Baseline Models
	Parameter Settings and Evaluation Metrics
	Vertex Classification
	Convergence Analysis
	Execution Time and Classification Performance Analysis
	Parameter Sensitivity

	Related Work
	Conclusion
	References
	Biographies
	Junyang Chen
	Zhiguo Gong
	Wei Wang
	Cong Wang
	Zhenghua Xu
	Jianming Lv
	Xueliang Li
	Kaishun Wu
	Weiwen Liu

