
Can the Brain Do Backpropagation?
— Exact Implementation of Backpropagation in

Predictive Coding Networks

Yuhang Song1, Thomas Lukasiewicz1, Zhenghua Xu2,∗, Rafal Bogacz3
1Department of Computer Science, University of Oxford, UK

2State Key Laboratory of Reliability and Intelligence of Electrical Equipment,
Hebei University of Technology, Tianjin, China

3MRC Brain Network Dynamics Unit, University of Oxford, UK
yuhang.song@some.ox.ac.uk, thomas.lukasiewicz@cs.ox.ac.uk,

zhenghua.xu@hebut.edu.cn, rafal.bogacz@ndcn.ox.ac.uk

Abstract

Backpropagation (BP) has been the most successful algorithm used to train artificial
neural networks. However, there are several gaps between BP and learning in
biologically plausible neuronal networks of the brain (learning in the brain, or
simply BL, for short), in particular, (1) it has been unclear to date, if BP can
be implemented exactly via BL, (2) there is a lack of local plasticity in BP, i.e.,
weight updates require information that is not locally available, while BL utilizes
only locally available information, and (3) there is a lack of autonomy in BP, i.e.,
some external control over the neural network is required (e.g., switching between
prediction and learning stages requires changes to dynamics and synaptic plasticity
rules), while BL works fully autonomously. Bridging such gaps, i.e., understanding
how BP can be approximated by BL, has been of major interest in both neuroscience
and machine learning. Despite tremendous efforts, however, no previous model
has bridged the gaps at a degree of demonstrating an equivalence to BP, instead,
only approximations to BP have been shown. Here, we present for the first time
a framework within BL that bridges the above crucial gaps. We propose a BL
model that (1) produces exactly the same updates of the neural weights as BP, while
(2) employing local plasticity, i.e., all neurons perform only local computations,
done simultaneously. We then modify it to an alternative BL model that (3) also
works fully autonomously. Overall, our work provides important evidence for the
debate on the long-disputed question whether the brain can perform BP.

1 Introduction

Backpropagation (BP) [1–3] as the main principle underlying learning in deep artificial neural net-
works (ANNs) [4] has long been criticized for its biological implausibility (i.e., BP’s computational
procedures and principles are unrealistic to be implemented in the brain) [5–10]. Despite such
criticisms, growing evidence demonstrates that ANNs trained with BP outperform alternative frame-
works [11], as well as closely reproduce activity patterns observed in the cortex [12–20]. As indicated
in [10, 21], since we apparently cannot find a better alternative than BP, the brain is likely to employ
at least the core principles underlying BP, but perhaps implements them in a different way. Hence,
bridging the gaps between BP and learning in biological neuronal networks of the brain (learning in
the brain, for short, or simply BL) has been a major open question for both neuroscience and machine
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learning [10, 21–29]. Such gaps are reviewed in [30–33], the most crucial and most intensively
studied gaps are (1) that it has been unclear to date, if BP can be implemented exactly via BL, (2) BP’s
lack of local plasticity, i.e., weight updates in BP require information that is not locally available,
while in BL weights are typically modified only on the basis of activities of two neurons (connected
via synapses), and (3) BP’s lack of autonomy, i.e., BP requires some external control over the network
(e.g., to switch between prediction and learning), while BL works fully autonomously.

Tremendous research efforts aimed at filling these gaps, trying to approximate BP in BL models.
However, earlier BL models were not scaling to larger and more complicated problems [8, 34–42].
More recent works show the capacity of scaling up BL to the level of BP [43–57]. However, to
date, none of the earlier or recent models has bridged the gaps at a degree of demonstrating an
equivalence to BP, though some of them [37, 48, 53, 58–60] demonstrate that they approximate BP, or
are equivalent to BP under unrealistic restrictions, e.g., the feedback is sufficiently weak [61, 48, 62].
The unability to fully close the gaps between BP and BL is keeping the community’s concerns open,
questioning the link between the power of artificial intelligence and that of biological intelligence.

Recently, an approach based on predictive coding networks (PCNs), a widely used framework
for describing information processing in the brain [31], has partially bridged these crucial gaps.
This model employed a supervised learning algorithm for PCNs to which we refer as inference
learning (IL) [48]. IL is capable of approximating BP with attractive properties: local plasticity and
autonomous switching between prediction and learning. However, IL has not yet fully bridged the
gaps: (1) IL is only an approximation of BP, rather than an equivalent algorithm, and (2) it is not fully
autonomous, as it still requires a signal controlling when to update weights.

Therefore, in this paper, we propose the first BL model that is equivalent to BP while satisfying local
plasticity and full autonomy. The main contributions of this paper are briefly summarized as follows:

• To develop a BL approach that is equivalent to BP, we propose three easy-to-satisfy conditions
for IL, under which IL produces exactly the same weight updates as BP. We call the proposed
approach zero-divergent IL (Z-IL). In addition to being equivalent to BP, Z-IL also satisfies the
properties of local plasticity and partial autonomy between prediction and learning.

• However, Z-IL is still not fully autonomous, as weight updates in Z-IL still require a triggering
signal. We thus further propose a fully autonomous Z-IL (Fa-Z-IL) model, which requires no control
signal anymore. Fa-Z-IL is the first BL model that not only produces exactly the same weight
updates as BP, but also performs all computations locally, simultaneously, and fully autonomously.

• We prove the general result that Z-IL is equivalent to BP while satisfying local plasticity, and that
Fa-Z-IL is additionally fully autonomous. Consequently, this work may bridge the crucial gaps
between BP and BL, thus, could provide previously missing evidence to the debate on whether BP
could describe learning in the brain, and links the power of biological and machine intelligence.

The rest of this paper is organized as follows. Section 2 recalls BP in ANNs and IL in PCNs. In
Section 3, we develop Z-IL in PCNs and show its equivalence to BP and its local plasticity. Section 4
focuses on how Z-IL can be realized with full autonomy. Sections 5 and 7 provide some further
experimental results and a conclusion, respectively.

2 Preliminaries

We now briefly recall artificial neural networks (ANNs) and predictive coding networks (PCNs),
which are trained with backpropagation (BP) and inference learning (IL), respectively. For both
models, we describe two stages, namely, (1) the prediction stage, when no supervision signal is
present, and the goal is to use the current parameters to make a prediction, and (2) the learning stage,
when a supervision signal is present, and the goal is to update the current parameters. Following [48],
we use a slightly different notation than in the original descriptions to highlight the correspondence
between the variables in the two models. The notation is summarized in Table 1 and will be introduced
in detail as the models are described. To make the dimension of variables explicit, we denote vectors
with a bar (e.g., x = (x1, x2, . . . , xn) and 0 = (0, 0, . . . , 0)).
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Table 1: Notation for ANNs and PCNs.
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Figure 1: ANNs and PCNs trained with BP and IL, respectively.

2.1 ANNs trained with BP

Artificial neural networks (ANNs) [3] are organized in layers, with multiple neuron-like value nodes
in each layer. Following [48], to make the link to PCNs more visible, we change the direction in
which layers are numbered and index the output layer by 0 and the input layer by lmax. We denote
by yl

i the input to the i-th node in the l-th layer. Thus, the connections between adjacent layers are:

yl

i =
∑nl+1

j=1 w
l+1

i,j f(yl+1

j ), (1)

where f is the activation function, wl+1

i,j is the weight from the jth node in the (l + 1)th layer to the
ith node in the lth layer, and nl+1 is the number of nodes in layer (l+ 1). Note that, in this paper, we
consider only the case where there are only weights as parameters and no bias values. However, all
results of this paper can be easily extended to the case with bias values as additional parameters; see
supplementary material.

Prediction: Given values of the input sin = (sin
1 , . . . , s

in
nlmax ), every ylmax

i in the ANN is set to the
corresponding sin

i , and then every y0
i is computed as the prediction via Eq. (1).

Learning: Given a pair (sin, sout) from the training set, y0 = (y0
1, . . . , y

0

n0) is computed via Eq. (1)
from sin as input and compared with sout via the following objective function E:

E = 1
2

∑n0

i=1(sout
i − y0

i )
2. (2)

Backpropagation (BP) updates the weights of the ANN by:

∆wl+1

i,j = −α · ∂E/∂wl+1

i,j = α · δl

if(yl+1

j ), (3)

where α is the learning rate, and δl
i = ∂E/∂yl

i is the error term, given as follows:

δl

i =

{
sout
i − y0

i if l = 0 ;

f ′(yl
i)
∑nl−1

k=1 δ
l−1

k wl

k,i if l ∈ {1, . . . , lmax − 1} . (4)

2.2 PCNs trained with IL

Predictive coding networks (PCNs) [31] are a widely used model of information processing in the
brain, originally developed for unsupervised learning. It has recently been shown that when a PCN
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is used for supervised learning, it closely approximates BP [48]. As the learning algorithm in [48]
involves inferring the values of hidden nodes, we call it inference learning (IL). Thus, we denote by t
the time axis during inference. As shown in Fig. 1, a PCN contains value nodes (blue nodes, with the
activity of xl

i,t), which are each associated with corresponding prediction-error nodes (error nodes:
red nodes, with the activity of εli,t). Differently from ANNs, which propagate the activity between
value nodes directly, PCNs propagate the activity between value nodes xl

i,t via the error nodes εli,t:

µl

i,t =
∑nl+1

j=1 θ
l+1

i,j f(xl+1

j,t ) and εli,t = xl

i,t − µl

i,t, (5)

where the θl+1

i,j ’s are the connection weights, paralleling wl+1

i,j in the described ANN, and µl
i,t denotes

the prediction of xl
i,t based on the value nodes in a higher layer xl+1

j,t . Thus, the error node εli,t
computes the difference between the actual and the predicted xl

i,t. The value node xl
i,t is modified so

that the overall energy Ft in εli,t is minimized all the time:

Ft =
∑lmax−1

l=0

∑nl

i=1
1
2 (εli,t)

2 . (6)

In this way, xl
i,t tends to move close to µl

i,t. Such a process of minimizing Ft by modifying all xl
i,t is

called inference, and it is running during both prediction and learning. Inference minimizes Ft by
modifying xl

i,t, following a unified rule for both stages:

∆xl

i,t =


0 if l = lmax

γ · (−εli,t + f ′(xl
i,t)

∑nl−1

k=1 ε
l−1

k,t θ
l

k,i) if l ∈ {1, . . . , lmax−1}
γ · (−εli,t) if l = 0 during prediction
0 if l = 0 during learning,

(7)

where xl
i,t+1 = xl

i,t + ∆xl
i,t, and γ is the integration step for xl

i,t. Here, ∆xl
i,t is different between

prediction and learning only for l = 0, as the output value nodes x0
i,t are left unconstrained during

prediction and are fixed to sout
i during learning. ∆xl

i,t is zero for l = lmax, as xlmax
i,t is fixed to sin

i in
both stages. Eqs. (5) and (7) can be evaluated in a network of simple neurons, as illustrated in Fig. 1.

Prediction: Given an input sin, the value nodes xlmax
i,t in the input layer are set to sin

i . Then, all the
error nodes εli,t are optimized by the inference process and decay to zero as t→∞. Thus, the value
nodes xl

i,t converge to µl
i,t, the same values as yl

i of the corresponding ANN with the same weights.

Learning: Given a pair (sin, sout) from the training set, the value nodes of both the input and the
output layers are set to the training pair (i.e., xlmax

i,t = sin
i and x0

i,t = sout
i ); thus,

ε0i,t = x0

i,t − µ0

i,t = sout
i − µ0

i,t. (8)

Optimized by the inference process, the error nodes εli,t can no longer decay to zero; instead, they
converge to values as if the errors had been backpropagated. Once the inference converges to an
equilibrium (t = tc), where tc is a fixed large number, a weight update is performed. The weights θl+1

i,j

are updated to minimize the same objective function Ft; thus,

∆θl+1

i,j = −α · ∂Ft/∂θ
l+1

i,j = α · εli,tf(xl+1

j,t ), (9)

where α is the learning rate. By Eqs. (7) and (9), all computations are local (local plasticity) in IL,
and, as stated, the model can autonomously switch between prediction and learning (some autonomy),
via running inference. However, a control signal is still needed to trigger the weights update at t = tc;
thus, full autonomy is not realized yet. The learning of IL is summarized in Algorithm 1. Note that
detailed derivations of Eqs. (7) and (9) are given in the supplementary material (and in [48]).

3 IL with Zero Divergence from BP and with Local Plasticity

We now first describe the temporal training dynamics of BP in ANNs and IL in PCNs. Based on this,
we then propose IL in PCNs with zero divergence from BP (and local plasticity), called Z-IL.

Temporal Training Dynamics. We first describe the temporal training dynamics of BP in ANNs
and IL in PCNs; see Fig. 2. We assume that we train the networks on a pair (sin, sout) from the dataset,
which is presented for a period of time T , before it is changed to another pair, moving to the next

4



Algorithm 1 Learning one training pair (sin, sout) (presented for the duration T ) with IL

Require: xlmax
0 is fixed to sin, x0

0 is fixed to sout.
1: for t = 0 to T do // presenting a training pair
2: for each neuron i in each level l do // in parallel in the brain
3: Update xl

i,t to minimize Ft via Eq. (7) // inference
4: if t = tc then // external control signal
5: Update each θl+1

i,j to minimize Ft via Eq. (9)
6: return // the brain rests
7: end if
8: end for
9: end for

(Algo. 1)

Weights update

Inference

No computation

Training epoch

Inference moment
Inference moment of 
inference convergence
Duration of presenting a 
training pair 

Layer index

(Algo. 2)

Figure 2: Comparison of the temporal training dynamics of BP, IL, Z-IL, and Fa-Z-IL. We assume
that we train the networks on a pair (sin, sout) from the dataset, which is presented for a period of
time T , before it is changed to another pair, moving to the next training epoch h. Within a single
training epoch h, (sin, sout) stays unchanged, and t runs from 0. As stated before, t is the time axis
during inference, which means that IL (also Z-IL and Fa-Z-IL) in PCNs run inference starting from
t = 0. The squares and rounded rectangles represent nodes in one layer and connection weights
between nodes in two layers of a neural network, respectively: BP (first row) only conducts weights
updates in one training epoch, while IL (second row) conducts inference until it converges (t = tc)
and updates weights (assuming T ≥ tc). Note that C1 is omitted in the figure for simplicity.

training epoch h. Within a single training epoch h, (sin, sout) stays unchanged, and t runs from 0.
As stated before, t is the time axis during inference, which means that IL (also Z-IL and Fa-Z-IL,
proposed below) in PCNs run inference starting from t = 0. In Fig. 2, squares and rounded rectangles
represent nodes in one layer and connection weights between nodes in two layers of a neural network,
respectively: BP (first row) only conducts weights updates in one training epoch, while IL (second
row) conducts inference until it converges (t = tc) and updates weights (assuming T ≥ tc).

In the rest of this section and in Section 4, we introduce zero-divergent IL (Z-IL) and fully autonomous
zero-divergent IL (Fa-Z-IL) in PCNs, respectively: Z-IL (third row) also conducts inference but until
specific inference moments t = l and updates weights between the layers l and l + 1, while Fa-Z-IL
(fourth row) conducts inference all the time and weights update is trigged autonomously at the same
inference moments as Z-IL.

Zero-divergent IL. We now present three conditions C1 to C3 under which IL in a PCN, denoted
zero-divergent IL (Z-IL), produces exactly the same weights as BP in the corresponding ANN (having
the same initial weights as the given PCN) applied to the same datapoints s = (sin, sout). In the
following, we first describe the three conditions C1 to C3, and then formally state (and prove in the
supplementary material) that Z-IL produces exactly the same weights as BP.

C1: Every xl
i,t and every µl

i,t, l∈{1, . . . , lmax−1}, at t= 0 is equal to yl
i in the corresponding ANN

with input sin. In particular, this also implies that εli,t = 0 at t= 0, for l∈{1, . . . , lmax−1}. This
condition is naturally satisfied in PCNs, if before the start of each training epoch over a training pair
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Algorithm 2 Learning one training pair (sin, sout) (presented for the duration T ) with Fa-Z-IL

Require: xlmax
0 is fixed to sin, x0

0 is fixed to sout.
Require: xl

i,0 = µl
i,0 for l ∈ {1, . . . , lmax − 1} (C1), and γ = 1 (C3).

1: for t = 0 to T do // presenting a training pair
2: for each neuron i in each level l do // in parallel in the brain
3: Update xl

i,t to minimize Ft via Eq. (7) // inference
4: Update each θl+1

i,j to minimize Ft via Eq. (9) with learning rate α · φ(εli,t)
5: end for
6: end for

(sin, sout), the input sin has been presented, and the network has converged in the prediction stage
(see Section 2.2). This condition corresponds to a requirement in BP, that it needs one forward pass
from sin to compute the prediction before conducting weights updates with the supervision signal
sout. Note that neither the forward pass for BP nor this initialization for IL are shown in Fig. 2. Note
that this condition is also applied in [48].

C2: Every weight θl+1

i,j , l ∈ {0, . . . , lmax−1}, is updated at t = l, that is, at a very specific inference
moment, related to the layer that the weight belongs to. This may seem quite strict, but it can actually
be implemented with full autonomy (see Section 4).

C3: The integration step of inference γ is set to 1. Note that solely relaxing this condition (keeping
C1 and C2 satisfied) results in BP with a different learning rate for different layers, where γ is the
decay factor of this learning rate along layers (see supplementary material).

To prove the above equivalence statement under C1 to C3, we develop two theorems in order (proved
in the supplementary material). The following first theorem formally states that the prediction error
in the PCN with IL on s under C1 to C3 is equal to the error term in its ANN with BP on s.

Theorem 3.1. Let M be a PCN, M ′ be its corresponding ANN (with the same initial weights as M ),
and let s be a datapoint. Then, every prediction error εli,t at t= l, l ∈ {0, . . . , lmax−1}, in M trained
with IL on s under C1 and C3 is equal to the error term δl

i in M ′ trained with BP on s.

We next formally state that every weights update in the PCN with IL on s under C1 to C3 is equal to
the weights update in its ANN with BP on s. This then immediately implies that the final weights of
the PCN with IL on s under C1 to C3 are equal to the final weights of its ANN with BP on s.

Theorem 3.2. Let M be a PCN, M ′ be its corresponding ANN (with the same initial weights as M ),
and let s be a datapoint. Then, every update ∆θl+1

i,j at t= l, l ∈ {0, . . . , lmax−1}, in M trained with
IL on s under C1 and C3 is equal to the update ∆wl+1

i,j in M ′ trained with BP on s.

4 Z-IL with Full Autonomy

Both IL and Z-IL in PCNs optimize the unified objective function of Eq. (6) during prediction and
learning. Thus, they both enjoy some autonomy already. Specifically, they can autonomously switch
between prediction and learning by running inference, depending only on whether x0

t is fixed to sout

or left unconstrained. However, when to update the weights still requires the control signal at t = tc
and t = l for IL and Z-IL, respectively.

Table 2: Models and their properties.
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Targeting at removing this control signal from Z-IL, we
now propose Fa-Z-IL, which realizes Z-IL with full au-
tonomy. Specifically, we propose a function φ(·), which
takes in εli,t and modulates the learning rate α, producing
a local learning rate for θl+1

i,j . As can be seen from Fig. 1,
εli,t is directly connected to θl+1

i,j , meaning that φ(·) works
locally at a neuron scale. For each θl+1

i,j , φ(εli,t) produces a
spike of 1 at exactly the inference moment of t = l, which
equals to triggering θl+1

i,j to be updated at t = l. In this
way, we can let the inference and weights update run all
the time with φ(·) modulating the local learning rate with
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Table 3: Success rate of detecting inference moments t = l with φ(·) of different td.

td 1 2 3 4 5 6 7 8 16

Success rate 93.4% 92.4% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

local information; thus, the resulting model works fully autonomously, performs all computations
locally, and updates weights at t = l, i.e., producing exactly Z-IL/BP, as long as C1 and C3 are
satisfied. Fa-Z-IL is summarized in Algorithm 2.

As the core of Fa-Z-IL, we found that quite simple functions φ(·) can detect the inference moment
of t = l from εli,t. Specifically, from Lemma A.3 in the supplementary material, we know that εli,t
under C1 diverges from its stable states at exactly t = l, i.e., εlt<l = 0. Thus, φ(·) can take in εli,t and
return 1 only if εli,t−td = 0, εli,t−td+1 = 0, . . . , εli,t−1 = 0, εli,t 6= 0, where td is a hyperparameter.
In this way, φ(εli,t) detects the inference moment of t = l and produces a spike of 1 at exactly t = l.
In special cases where εli,t=l = 0, the detection fails, however, by Eq. (9), ∆θl+1

i,j produced at t = l is
also zero, since εli,t=l = 0, so the failure does no harm. Since it is possible for εli,t to go across zero,
having a larger td means a more accurate detection. In experiments, φ(·) of td = 4 is already capable
of detecting with 100% success rate; see Table 3. Furthermore, the function φ, as the only additional
component introduced in Fa-Z-IL to realize full autonomy, is highly plausible that such a computation
could be performed by biological neurons, because some types of neurons are well-known to respond
predominantly to changes in their input [63].

However, Fa-Z-IL does require the input to be presented before the teacher to satisfy C1, i.e., the
convergence of a prediction phase before t = 0 is still needed. We consider this to be a requirement
of the learning setup. Also, such a requirement is much weaker, compared to switching computational
rules (BP) and detecting the convergence of global variables (IL). We leave the study of removing
this requirement or putting it inside an autonomous neural system as future research. During this
prediction phase before t = 0, it is notable that the error nodes change due to feedforward input,
while during learning, the error nodes change due to feedback input. In order to prevent learning
during prediction, φ is equal to 1 only if the change in error nodes is caused by feedback input.
Furthermore, experiments of classification with Fa-Z-IL have been conducted, and Fa-Z-IL produces
exactly the same result as Z-IL and BP, the numbers of which can be found in the supplementary
material. It should also be noted that Fa-Z-IL loses formal equivalence to BP, but with td > 4,
empirical equivalence always remains.

All proposed models are summarized in Table 2 (schematic algorithms are given in the supplementary
material), where Fa-Z-IL is the only model that is not only equivalent to BP, but also performs all
computations locally and fully autonomously.

5 Experiments

In this section, we complete the picture of this work with experimental results, providing ablation
studies on MNIST and measuring the running time of the discussed approaches on ImageNet.

5.1 MNIST

We now show that zero-divergence cannot be achieved when strictly weaker conditions than C1,
C2, and C3 in Section 3 are satisfied only. Specifically, with experiments on MNIST, we show the
divergence of PCNs trained with ablated variants of Z-IL from ANNs trained with BP.

Setup. We use the same setup as in [48]. Specifically, we train for 64 epochs with α= 0.001, batch
size 20, and logistic sigmoid as f . To remove the stochasticity of the batch sampler, models in one
group within which we measure divergence are set with the same seed. We evaluate three of such
groups, each set with different randomly generated seeds ({1482555873, 698841058, 2283198659}),
and the final numbers are averaged over them. The divergence is measured in terms of the error
percentage on the test set summed over all epochs (test error, for short), as in [48, 37, 58, 53, 59],
and of the final weights, as in [59]. The divergence of the test error is the L1 distance between the
corresponding test errors, averaged over 64 training iterations (the test error is evaluated after each
training iteration). The divergence of the final weights is the sum of the L2 distance between the
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Figure 3: Ablation of C2, C3, and C1, where divergence is measured on test error and final weights.

corresponding weights, after the last training iteration. We conducted experiments on MNIST (with
784 input and 10 output neurons; the other settings are as in [64]). We investigated three different
network structures with 1, 2, and 3 hidden layers, respectively (i.e., lmax ∈ {2, 3, 4}), each containing
32 neurons.

Ablation of C1. Assuming C2 and C3 satisfied, to ablate C1, we consider situations when the
network has not converged in the prediction stage before the training pair is presented, i.e., xl

i,0 6= µl
i,0.

To simulate this, we sampled xl
i,0 around the mean of µl

i,0 with different standard deviations σ, where
σ = 0 corresponds to satisfying C1. We swipe σ = {0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. Fig. 3,
right column, shows that zero divergence is only achieved when σ = 0, i.e., C1 is satisfied. A larger
version of Fig. 3 is given in the supplementary material.

Ablation of C2 and C3. Assuming C1 satisfied, to ablate C3, we swipe γ = {0.01, 0.1, 0.5, 1,
5, 10}, and to ablate C2, we swipe t = {l, 0, 1, 2, 3, 4, 16, 64}. Here, setting t to a fixed number is
exactly the implementation of IL with tc set to this fixed number. We set t = l between t = lmax − 2
and t = lmax − 1 (as argued in the supplementary material). Fig. 3, three left columns, shows that
zero divergence is only achieved when t = l and γ = 1, i.e., C2 and C3 are satisfied. Note that the
settings of t ≥ 16 and γ ≤ 0.5 are typical for IL in [20].

5.2 ImageNet

We further conduct experiments on ImageNet to measure the running time of Z-IL and Fa-Z-IL on
large datasets. In detail, we show that Z-IL and Fa-Z-IL create minor overheads over BP, which
supports their scalability. The detailed implementation setup is given in the supplementary material.

Table 4 shows the averaged running time of each weights update of BP, IL, Z-IL, and Fa-Z-IL.

Table 4: Average runtime of each weights
update (in ms) of BP, IL, Z-IL, and Fa-Z-IL.

Devices BP IL Z-IL Fa-Z-IL

CPU 3.1 19.2 3.6 3.6
GPU 3.7 56.3 4.1 4.2

For IL, we set tc = 20, following [48]. As can be seen,
IL introduces large overheads, due to the fact that it
needs at least td inference steps before conducting a
weights update. In contrast, Z-IL and Fa-Z-IL run with
minor overheads compared to BP, as they require at
most lmax inference steps to complete one update of
weights in all layers. Comparing Fa-Z-IL to Z-IL, it
is also obvious that the function φ creates only minor
overheads. These observations support the claim that
Z-IL and Fa-Z-IL are indeed scalable.

6 Related Work

We now review several lines of research that approximate BP in ANNs with BL models, each of which
corresponds to an argument for which BP in ANNs is considered to be biologically implausible.
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One such argument is that BP in ANNs encodes error terms in a biologically implausible way, i.e.,
error terms are not encoded locally. It is often discussed along with the lack of local plasticity. How
error terms can be alternatively encoded and propagated locally has been one of the most intensively
studied topics. One promising assumption is that the error term can be represented in dendrites
of the corresponding neurons [35, 65, 66]. Such efforts are unified in [21], with a broad range of
works [36, 37] encoding the error term in activity differences. IL and Z-IL in PCNs also do so. In
addition, Z-IL shows that the error term in BP in ANNs can be encoded with its exact value in the
prediction error of IL in PCNs at very specific inference moments.

BP in ANNs is also criticized for requiring an external control (e.g., the computation is changed
between prediction and learning). An important property of PCNs trained with IL, in contrast, is that
they autonomously [48] switch between prediction and learning. PCNs trained with Z-IL also have
this property. But IL requires an external control over when to update weights (t = tc), and Z-IL
requires control to only update weights at very specific inference moments (t = l). However, Z-IL
can be realized with full autonomy, leading to the proposed Fa-Z-IL.

Finally, BP in ANNs is also criticized for backward connections that are symmetric to forward con-
nections in adjacent layers and for using unrealistic models of (non-spiking) neurons. A common way
to remove the backward connections [8, 39, 67] is based on the idea of zeroth-order optimization [68].
However, the latter needs many trials depending on the number of weights [69] and can be further im-
proved by perturbing the outputs of the neurons instead of the weights [70]. Admitting the existence
of backward connections, more recent works show that asymmetric connections are able to produce
a comparable performance [38, 71, 54]. In the predictive coding models (IL, Z-IL, and Fa-Z-IL),
the errors are backpropagated by correct weights, because the model includes feedback connections
that also learn. The weight modification rules for corresponding feedforward and feedback weights
are the same, which ensures that they remain equal if initialized to equal values (see [48]). As for
the models of neurons, BP has recently also been generalized to spiking neurons [72]. Our work
is orthogonal to the above, i.e., we still use symmetric backward connections and do not consider
spiking neurons.

Furthermore, [46] also analyzes the first steps during inference after a perturbation caused by turning
on the teacher, starting from a prediction fixpoint, which may serve similar general purposes. However,
the obtained learning rule differs substantially from that of our Z-IL, since the energy function is not
the one which governs PCNs. A section outlining the differences of learning rules between [46] and
Z-IL is included in the supplementary material.

Some features of PCNs are inconsistent with known properties of biological networks, but it has
recently been shown that variants of PCNs can be developed without three of these implausible
elements, which retain high classification performance. The first unrealistic feature are 1-to-1
connections between value and error nodes (Fig. 1). However, it has been proposed that errors can
be represented in apical dendrites of cortical neurons [62], and the equations of predictive coding
networks can be mapped on such an architecture [10]. Alternatively, it has been demonstrated how
these 1-to-1 connections can be replaced by dense connections [73]. The other two unrealistic features
of PCNs are symmetric forward-backward weights and non-linear functions affecting only some
outputs of the neurons. Nevertheless, it has been demonstrated that these features may be removed
without significantly affecting the classification performance [73].

7 Summary and Outlook

In this paper, we have presented for the first time a framework to BL that (1) produces exactly the
same updates of the neural weights as BP, while (2) employing local plasticity. Based on the above
framework, we have additionally presented a BL model that (3) also works fully autonomously. This
suggests a positive answer to the long-disputed question whether the brain can perform BP.

As for future work, we believe that the proposed Fa-Z-IL model will open up many new research
directions. Specifically, it has a very simple implementation (see Algorithm 2), with all compu-
tations being performed locally, simultaneously, and fully autonomously, which may lead to new
architectures of neuromorphic computing.
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Broader Impact

This work shows that backpropagation in artificial neural networks can be implemented in a biologi-
cally plausible way, providing previously missing evidence to the debate on whether backpropagation
could describe learning in the brain. In machine learning, backpropagation drives the contemporary
flourish of machine intelligence. However, it has been doubted for long that though backpropagation
is indeed powerful, its computational procedure is not possible to be implemented in the brain. Our
work provides strong evidence that backpropagation can be implemented in the brain, which will
solidify the community’s confidence on pushing forward backpropagation-based machine intelligence.
Specifically, the machine learning community may further explore if such equivalence holds for other
or more complex BP-based networks.

In neuroscience, models based on backpropagation have helped to understand how information is
processed in the visual system [15, 16]. However, it was not possible to fully rely on these insights,
as backpropagation was so far seen unrealistic for the brain to implement. Our work provides strong
confidence to remove such concerns, and thus could lead to a series of future works on understanding
the brain with backpropagation. Specifically, the neuroscience community may now use the patterns
produced by BP to verify if such computational model can explain learning in brain. Also, our work
may inspire researchers to look for the existence of the function φ, which completes the biological
foundation of Fa-Z-IL.

As for ethical aspects and future societal consequences, we consider our work to be an important
step towards understanding biological intelligence, which indicates at least no harm on the ethical
aspects. Instead, being able to understand biological intelligence potentially leads to advances in
medical research, which will substantially benefit the well-beings of humans.
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