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ABSTRACT
Matrix factorization has now become a dominant solution for
personalized recommendation on the Social Web. To alleviate
the cold start problem, previous approaches have incorporated
various additional sources of information into traditional ma-
trix factorization models. These upgraded models, however,
achieve only “marginal” enhancements on the performance
of personalized recommendation. Therefore, inspired by the
recent development of deep-semantic modeling, we propose
a hybrid deep-semantic matrix factorization (HDMF) model
to further improve the performance of tag-aware personal-
ized recommendation by integrating the techniques of deep-
semantic modeling, hybrid learning, and matrix factorization.
Experimental results show that HDMF significantly outper-
forms the state-of-the-art baselines in tag-aware personalized
recommendation, in terms of all evaluation metrics.

Index Terms— Deep-Semantic Modeling, Matrix Factor-
ization, Personalized Recommendation, Hybrid Learning

1. INTRODUCTION

In the Web 2.0, social tagging systems are introduced by
many websites, where users can freely annotate online items
using arbitrary tags (commonly known as folksonomy [1]).
Since social tags are good summaries of the relevant items
and the users’ preferences, and since they also contain little
sensitive information about their creators, they are valuable
information for privacy-enhanced personalized recommen-
dation. Consequently, many efforts have been put on tag-
aware personalized recommendation using content-based
filtering [2, 3, 4] or collaborative filtering [5, 6, 7, 8].

As users can freely choose their own vocabulary, social
tags may contain many uncontrolled vocabularies. This usu-
ally results in sparse, redundant, and ambiguous tag informa-
tion, and significantly weakens the performance of content-
based recommendation systems. The common solution is to
apply machine learning techniques, e.g., clustering [3] or au-
toencoders [9], to learn more abstract and representative fea-
tures from raw tags. Our previous work in [4] proposes a
deep-semantic model, DSPR, which utilizes deep neural net-
works to model abstract and recommendation-oriented rep-
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resentations for social tags. DSPR achieves a better perfor-
mance than the clustering and autoencoder solutions.

Matrix factorization is a collaborative-filtering-based so-
lution, which has become a dominant solution for personal-
ized recommendation on the Social Web [5, 6, 7] and has been
reported to be superior to memory-based techniques [10].
However, there exists a cold start problem in matrix factor-
ization: many users only give very few ratings, resulting in a
very sparse user-item rating matrix, and making it difficult to
summarize users’ preferences. A widely adopted solution is
to incorporate additional sources of information about users,
e.g., implicit feedback [10], social friendship [6], geograph-
ical neighborhood [11], or textual comments [7]. We call
these upgraded models additional-information-based matrix
factorization (AMF) models.

Although DSPR and AMF models have progressively im-
proved tag-aware personalized recommendation, there are a
few drawbacks: (i) DSPR does not utilize the idea of collab-
orative filtering; so the valuable correlation information be-
tween users and items is not being used to help recommen-
dations. (ii) As a deep model, DSPR stacks many layers,
making it difficult to optimize the model by gradient back-
propagation. (iii) The existing AMF models generally incor-
porate the additional information as a regularization term of
matrix factorization; this term’s coefficient, as proved in [6],
has to be very small; therefore, the additional information has
very limited contribution on the optimizing gradient, result-
ing in only “marginal” improvements on the recommendation
performance. (iv) The recommendation results of the existing
AMF models are difficult to interpret, because latent factor
matrices are used to represent users and items.

Consequently, to solve the above problems and to further
improve the performance of tag-aware personalized recom-
mendation, we propose a hybrid deep-semantic matrix fac-
torization (HDMF) model, which integrates the techniques of
deep-semantic modeling, hybrid learning, and matrix factor-
ization. Generally, HDMF uses a tag-based user matrix and
a tag-based item matrix as respective inputs of two deep au-
toencoders to generate deep-semantic user and item matrices
at the code layers, and also reconstructed user and item ma-
trices at the output layers. The deep model is then trained by
using a hybrid learning signal to minimize both reconstruc-
tion errors and deep-semantic matrix factorization errors, i.e.,
the squared differences between the user-item rating matrix



(seeing tags as positive ratings) and the dot product of deep-
semantic user and item matrices (seeing deep-semantic matri-
ces as the decomposed matrices in matrix factorization). The
intuitions behind using the hybrid learning signal are: (i) min-
imizing reconstruction errors can learn better representations
for both users and items; (ii) deep-semantic matrix factoriza-
tion offers a learning signal that connects users and items to
discover the underlying users’ preferences; and (iii) two sig-
nals can complement each other to provide sufficient gradi-
ents for a better model optimization and escaping local min-
ima.

HDMF has the following advantages. (i) It overcomes the
drawback of DSPR by adding collaborative capabilities to the
deep-semantic model. (ii) The hybrid learning signal helps
HDMF to better optimize the model and escape local minima.
(iii) Differently from AMF models, the additional tag infor-
mation in HDMF is directly used to model the decomposed
user and item matrices in matrix factorization; this thus max-
imizes the effect of the additional tag information on model
optimization. (iv) HDMF remedies the non-interpretability
problem in matrix factorization: considering deep-semantic
matrices as the decomposed matrices and finding the most in-
fluential input tags for each dimension, the decomposed user
and item matrices in HDMF become interpretable.

The main contributions of this paper are briefly as fol-
lows: (i) We briefly analyze the state-of-the-art personalized
recommendation models that use content-based filtering or
matrix factorization and identify their existing problems. (ii)
We innovatively propose a hybrid deep-semantic matrix fac-
torization (HDMF) model to tackle these problems and to fur-
ther improve the performance of tag-aware personalized rec-
ommendation, by integrating the techniques of deep-seman-
tic modeling, hybrid learning, and matrix factorization. (iii)
Experimental results show that HDMF significantly outper-
forms the state-of-the-art baselines in tag-aware personalized
recommendation, in terms of all evaluation metrics, e.g., its
mean reciprocal rank (resp., mean average precision) is 1.52
(resp., 1.66) times as high as that of the best baseline.

2. PRELIMINARIES

A folksonomy is a tuple F = (U, T,D,A), where U , T , and
D are sets of users, tags, and items, respectively, and A ⊆
U × T ×D is a set of assignments (u, t, d) of t to d by u [1].

A tag-based user profile is a feature vector x = [gui ]
|T |
i=1,

where |T | is the tag vocabulary’s size, and gui = |{(u, ti, d) ∈
A | d∈D}| is the number of times that user u annotates items
with tag ti; the tag-based user matrix is thus defined as X =

[xi]
|U |
i=1, where xi is the profile vector of the ith user, and |U | is

the total number of users. Similarly, a tag-based item profile is
a vector y = [gdj ]

|T |
j=1, where gdj = |{(u, tj , d)∈A | u∈U}|

is the number of times that item d is annotated with tag tj ;
while the tag-based item matrix is defined as Y = [yj ]

|D|
j=1,

where yj is the profile vector of the jth item, and |D| is the
total number of items.

The user-item rating matrix is R = [ri,j ]
|U |,|D|
i=1,j=1, where

ri,j is the number of tags annotated by user i to item j. Given
R, traditional matrix-factorization-based recommender sys-
tems aim to approximate R using the decomposed latent ma-
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Fig. 1. Overview of HDMF
trices of users and items, i.e., X l and Y l, respectively, which
are optimized by minimizing the squared differences between
R and X lT · Y l on a set of observed ratings; formally,

min
Xl,Y l

|U|∑
i=1

|D|∑
j=1

Ii,j(ri,j − xli
T · ylj)2, (1)

where Ii,j is 1, if user i annotated item j, and 0, otherwise [7].
After optimization learning, the predicted user-item rating
matrix R̂ = X lT · Y l is used for recommendation.

3. HDMF

To alleviate the cold start problem in traditional matrix factor-
ization, a widely adopted solution is to incorporate additional
sources of information about users to achieve additional-
information-based matrix factorization (AMF) [11, 10, 6, 7].
However, as shown in our experiments and the results in [7],
the existing AMF models achieve only “marginal” (around
5% in [7]) performance improvements. Therefore, we pro-
pose a hybrid deep-semantic matrix factorization (HDMF)
model to further enhance the performance of tag-aware per-
sonalized recommendation, by integrating deep-semantic
modeling, hybrid learning, and matrix factorization.

Figure 1 shows an overview of the HDMF model. Gen-
erally, HDMF takes the tag-based user and item matrices X
and Y (defined in Section 2) as inputs of two deep autoen-
coders, consisting of encoders and decoders. These inputs
are then passed through multiple hidden layers and projected
to the deep-semantic user and item matrices X̃ and Ỹ at the
code layers, and to the reconstructed user and item matrices
X ′ and Y ′ at the output layers. The HDMF model is then
trained by using a hybrid learning signal to minimize both
deep-semantic matrix factorization errors and reconstruction
errors. Finally, a predicted user-item rating matrix R̂ = X̃T ·
Ỹ is used for personalized recommendation.

3.1. Deep-Semantic Matrix Factorization
Deep-semantic matrix factorization is based on the encoder
parts of autoencoders. Formally, given the tag-based user and
item matrices X and Y , a weight matrix W1, and a bias vec-
tor b1, the intermediate outputs of the jth hidden layers hj(·),
j ∈ {2, . . . ,K}, in the encoders are defined as follows:



hj(X) = tanh(Wjhj−1(X) + bj), (2)
hj(Y ) = tanh(Wjhj−1(Y ) + bj), (3)

whereWj and bj are the weight matrix and the bias vector for
the jth hidden layers in the encoders, respectively, and K is
the total number of hidden layers in each encoder. Then, the
outputs of the Kth hidden layers, i.e., the code layers, are the
deep-semantic user and item matrices, denoted X̃ and Ỹ :

X̃ = hK(X), Ỹ = hK(Y ). (4)

Consequently, by seeing deep-semantic matrices X̃ and Ỹ
as the decomposed user and item matrices in matrix factoriza-
tion, the parameters Wj and bj can be optimized by minimiz-
ing the following deep-semantic matrix factorization errors:

LDMF (Θ) = (1− λθ)
|U|∑
i=1

|D|∑
j=1

Ii,j(ri,j − x̃Ti · ỹj)2

+ λθ(

K∑
j=1

‖Wj‖2 +

K∑
j=1

‖bj‖2), (5)

where ri,j is an element in the user-item rating matrix R, in-
dicating the number of tags assigned by user i to item j; x̃i
(resp., ỹj) is the vector at ith (resp., jth) column of X̃ (resp.,
Ỹ ), which is the deep-semantic representation of the ith user
(resp., jth item); the second term is a regularization term used
to prevent overfitting, and λθ is the regularization parameter.

3.2. Hybrid Deep-semantic Matrix Factorization
However, it is difficult to train the model using solely the
learning signal from deep-semantic matrix factorization. This
is because the model stacks many layers of non-linearities,
and when learning signals are back-propagated to the first
few layers, they become minuscule and insignificant to learn
good representations for the users and items, which in turn re-
sults in poor local minima. A common solution is to first pre-
train each layer using restricted Boltzmann machines (RBMs)
[12, 13] or autoencoders [14] and then use back-propagation
to fine-tune the entire deep neural network [15].

Motivated by our previous work [16], we directly incor-
porate autoencoders into deep-semantic matrix factorization
model, and train the deep model using a hybrid learning sig-
nal that integrates reconstruction errors of autoencoders with
deep-semantic matrix factorization errors. We call this model
hybrid deep-semantic matrix factorization (HDMF). The in-
tuition is as follows: (i) the reconstruction-error-based signal
can learn better representations for both users and items;
(ii) the collaborative learning signal from deep-semantic
matrix factorization can connect users and items to dis-
cover underlying users’ preferences; and (iii) furthermore,
the reconstruction-error-based signal can complement deep-
semantic matrix factorization to provide sufficient gradients
for better optimizing the model and escaping local minima.

As in Figure 1, we adopt autoencoders with tied weights
in HDMF, i.e., the weight matrices in the decoder are trans-
poses of weight matrices in the encoder. The decoders take
the deep-semantic user and item matrices X̃ and Ỹ at the code
layer as the inputs and generate reconstructed user and item
matrices X ′ and Y ′ at their output layers. Then, reconstruc-
tion errors are computed based on the squared differences be-
tween the original tag-based matrices (X and Y ) and the re-

Table 1. Dataset Information

Users (u) Tags (t) Items (i) Assignments ((u, t, i))

1 843 3 508 65 877 339 744

constructed matrices (X ′ and Y ′). Finally, the reconstruction-
error-based learning signal will be used to first update WT

1 ,
then back-propagated to update WT

2 , WT
3 , and so on. As up-

dating WT
j is equivalent to updating Wj , this signal comple-

ments deep-semantic matrix factorization and offers sufficient
gradients to the first few layers of the deep model.

The intermediate outputs of the K+jth hidden layers
hK+j(·), j ∈ {1, . . . ,K − 1}, in the decoders are defined as:

hK+j(X) = tanh(WT
K−(j−1)hK+(j−1)(X) + bK+j), (6)

hK+j(Y ) = tanh(WT
K−(j−1)hK+(j−1)(Y ) + bK+j), (7)

where WT
K−(j−1) is the transpose of WK−(j−1), and bK+j is

the bias vector for theK+jth hidden layer. The outputs of the
2K−1th hidden layers are used to generate reconstructed user
and item profiles, denoted X ′ and Y ′, at the output layers:

X ′ = tanh(WT
1 h2K−1(X) + b2K), (8)

Y ′ = tanh(WT
1 h2K−1(Y ) + b2K). (9)

Then, the reconstruction errors of the user (resp., item)
matrix are computed as the sum of the Euclidean (i.e., L2)
norms of the differences between the tag-based user (resp.,
item) profile xi (resp., yj) in X (resp., Y ) and the recon-
structed user (resp., item) profile x′i (resp., y′j) in X ′ (resp.,
Y ′). By integrating the reconstruction errors with the deep-
semantic matrix factorizations errors, the HDMF model is
thus trained by minimizing the following hybrid signal:

LHDMF = λα

|U|∑
i=1

|D|∑
j=1

Ii,j(ri,j − x̃Ti · ỹj)2 + λe(

|U|∑
i=1

‖x′i − xi‖

+

|D|∑
j=1

‖y′j − yj‖) + λθ(

K∑
j=1

‖Wj‖2 +

2K∑
j=1

‖bj‖2).

4. EXPERIMENTS

Extensive experiments are conducted to compare HDMF
with the following state-of-the-art baselines: (i) Four content-
based tag-aware recommendation models that utilize social
tags as content information for tag-aware personalized recom-
mendation are selected, where machine learning techniques
are applied to model abstract and effective representations
for users or/and items: the clustering-based models CCS and
CCF [3], the autoencoder-based model ACF [9], and the
deep-semantic similarity-based model DSPR [4]. (ii) Three
matrix-factorization-based recommendation models are also
selected: the traditional matrix factorization model MF, and
the additional-information-based matrix factorization (AMF)
models MFsf [6] and MFtc [7], which incorporate social
friendships and textual comments of users as the additional
sources of information for matrix factorization.

For fair comparison, experiments are performed on the
same real-world social-tagging dataset as in [4, 9], which is
gathered from Delicious.com and released in [17]. After us-
ing the same pre-processing to remove the infrequent tags



Table 2. Tag-Aware Personalized Recommendation Performances of Various Models (in %)

Models P@5 P@15 P@30 P@50 R@5 R@15 R@30 R@50 F@5 F@15 F@30 F@50 MAP MRR

CCF 0.913 0.757 0.597 0.454 0.439 1.051 1.499 1.803 0.593 0.880 0.854 0.726 0.437 0.200
ACF 1.120 0.909 0.736 0.595 0.590 1.209 1.917 2.364 0.791 1.038 1.064 0.950 0.637 0.252
CCS 2.397 1.903 1.564 1.273 0.938 2.271 3.739 4.774 1.349 2.070 2.205 2.010 1.319 0.523

DSPR 13.34 9.285 6.950 5.306 4.235 8.347 12.00 14.98 6.430 8.791 8.803 7.836 5.452 2.547

MF 9.157 7.467 6.784 6.302 1.302 2.851 4.988 7.587 2.280 4.127 5.749 6.899 6.757 1.682
MFsf 10.16 8.063 7.302 6.736 1.457 3.109 5.407 8.132 2.549 4.487 6.213 7.368 6.920 1.798
MFtc 10.06 8.032 7.282 6.741 1.436 3.066 5.388 8.101 2.513 4.438 6.197 7.359 6.908 1.790

HDMF 18.20 15.96 13.61 11.37 5.510 13.05 21.13 28.70 8.458 14.36 16.56 16.29 11.50 3.870

used less than 15 times, the resulting dataset is in Table 1. We
randomly selected 80% of assignments as training set, 5% as
validation set, and 15% as test set. All models were imple-
mented using Python and Theano and run on a GPU server
with an NVIDIA Tesla K40 GPU and 12GB GPU memory.
The parameters of HDMF are selected by grid search, and the
values are set as follows: (i) # of hidden layers is 5; (ii) # of
neurons from 1st to 5th hidden layer are 2 000, 300, 128, 300,
and 2 000, respectively; (iii) λθ and λe are set to 0.01 and 0.2;
and (iv) the learning rate for model training is 0.002.

The most popular evaluation metrics for recommendation
are precision, recall, and F1-score [18]. As users usually only
browse the topmost recommended items, we apply these met-
rics at a given cut-off rank k, i.e., considering only the top-
k results on the recommendation list, called precision at k
(P@k), recall at k (R@k), and F1-score at k (F@k). Since
users always prefer to have their target items ranked in the
front of the recommendation list, we also employ as evalua-
tion metrics the mean average precision (MAP) and the mean
reciprocal rank (MRR), which take into account the order of
items and give a greater importance to the ones ranked higher.

Table 2 depicts the performances of HDMF and the seven
baselines on the Delicious dataset. Generally, the relative per-
formances of the baselines reported in Table 2 are highly con-
sistent with the results reported in [9], [4], and [7]; namely,
(i) ACF outperforms CCF, (ii) DSPR outperforms CCF, ACF,
and CCS, and (iii) MFsf and MFct “slightly” outperform MF,
respectively. More importantly, we note that our proposed
model, HDMF, significantly outperforms all seven baselines
in all metrics; e.g., the MRR (resp., MAP) of HDMF are
1.52 (resp., 1.66) times as high as that of the best baseline,
DSPR (resp., MFsf ), while the relative performances inP@k,
R@k, andF@k are also similar. This finding strongly proves
that by integrating the techniques of deep-semantic modeling,
hybrid learning, and matrix factorization, HDMF overcomes
the existing problems (as presented in Section 1) of state-of-
the-art recommendation models and achieves a very superior
performance in tag-aware personalized recommendation.

Specifically, the MRR and MAP of HDMF are 1.52 and
2.1 times, respectively, as high as those of the state-of-the-
art deep-semantic model DSPR. In addition, the relative im-
provements of HDMF to DSPR, in terms ofP@k,R@k, and
F@k, all gradually enhance with the rise of the cut-off rank k,
i.e., increasing from around 1.3 times at k = 5 to more than
double at k = 50. This observation demonstrates that incor-
porating collaborative-based capabilities (i.e., using correla-
tion information between users and items to help the recom-

mendation) can greatly enhance the deep-semantic model’s
performance in tag-aware recommendation, especially for the
one with relative long recommendation lists.

Furthermore, the AMF models, MFsf and MFtc, have
close performances, and their relative improvements to MF
are “marginal”, e.g., their MAP and MRR are only 2.4% and
6.8% better than those of MF. This is consistent with the re-
sults in [7], where the improvement rates of MFsf and MFtc
to MF are only 3.2% and 5.5%. The reason may be as fol-
lows: the AMF models incorporate the additional source of
information as a regularization term with a small coefficient
in matrix factorization, which greatly limits the additional in-
formation’s contribution on the optimizing gradient and thus
limits their capabilities in improving the recommendation per-
formance. By contrast, as shown in Table 2, HDMF dramat-
ically outperforms MF: the MAP and MRR of HDMF are
about 70% and 130%, respectively, better than those of MF.
This is mainly because the additional social tag information in
HDMF is utilized to model the deep-semantic user and item
matrices, which are then used directly as the decomposed user
and item matrices in matrix factorization; since the decom-
posed matrices have a dominant contribution on the optimiz-
ing gradient, HDMF maximizes the effect of the additional
social tag information on model optimization, making it pos-
sible to achieve significant improvements.

5. SUMMARY AND OUTLOOK

We analyzed existing problems of state-of-the-art tag-aware
personalized recommendation models and proposed a hy-
brid deep-semantic matrix factorization (HDMF) model to
tackle these problems. Extensive experimental studies were
conducted and the results showed that, by integrating deep-
semantic modeling, hybrid learning, and matrix factorization,
HDMF greatly outperforms the state-of-the-art baselines in
all evaluation metrics. In the future, further experiments will
be conducted to compare the performances of HDMF on dif-
ferent kinds of Social Web datasets. We will also investigate
methodologies to add spatial and temporal information into
the HDMF model to capture the users’ real-time preferences.
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